Multi-attribute decision-making problem using complex q-rung orthopair fuzzy interaction aggregation operators

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ziad Khan, Ikhtesham Ullah, Fawad Hussain, Tariq Rahim, Rashid Jan, Madad Khan
{"title":"Multi-attribute decision-making problem using complex q-rung orthopair fuzzy interaction aggregation operators","authors":"Ziad Khan, Ikhtesham Ullah, Fawad Hussain, Tariq Rahim, Rashid Jan, Madad Khan","doi":"10.1007/s12190-024-02170-9","DOIUrl":null,"url":null,"abstract":"<p>The complex <i>q</i>-rung orthopair fuzzy sets are an important way to express uncertain and ambiguous information, and they are superior to the complex fuzzy sets, complex intuitionistic fuzzy sets, complex pythagorean fuzzy sets, and complex fermatean fuzzy sets. This paper extend the notion of <i>q</i>-rung orthopair fuzzy sets to complex <i>q</i>-rung orthopair fuzzy sets. Interaction aggregation operators are often used in various fields to solve multi-attribute decision-making Problems. By utilizing arithmetic and geometric operators, some well-known complex <i>q</i>-rung orthopair fuzzy interaction aggregation operators such as complex <i>q</i>-rung orthopair fuzzy interaction weighted average operator, complex <i>q</i>-rung orthopair fuzzy interaction weighted geometric operator, complex <i>q</i>-rung orthopair fuzzy interaction order weighted operator, complex <i>q</i>-rung orthopair fuzzy interaction order weighted geometric operator, complex <i>q</i>-rung orthopair fuzzy interaction hybrid operator, and complex <i>q</i>-rung orthopair fuzzy interaction hybrid geometric operator have been developed. In addition, some of the unique properties of these newly established operators are investigated. Finally, we explore a decision-making approach to solve multi-attribute decision-making Problem. The viability and flexibility of the suggested technique is explored with the help of a numerical example and the proposed results are compared with several existing approaches.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02170-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The complex q-rung orthopair fuzzy sets are an important way to express uncertain and ambiguous information, and they are superior to the complex fuzzy sets, complex intuitionistic fuzzy sets, complex pythagorean fuzzy sets, and complex fermatean fuzzy sets. This paper extend the notion of q-rung orthopair fuzzy sets to complex q-rung orthopair fuzzy sets. Interaction aggregation operators are often used in various fields to solve multi-attribute decision-making Problems. By utilizing arithmetic and geometric operators, some well-known complex q-rung orthopair fuzzy interaction aggregation operators such as complex q-rung orthopair fuzzy interaction weighted average operator, complex q-rung orthopair fuzzy interaction weighted geometric operator, complex q-rung orthopair fuzzy interaction order weighted operator, complex q-rung orthopair fuzzy interaction order weighted geometric operator, complex q-rung orthopair fuzzy interaction hybrid operator, and complex q-rung orthopair fuzzy interaction hybrid geometric operator have been developed. In addition, some of the unique properties of these newly established operators are investigated. Finally, we explore a decision-making approach to solve multi-attribute decision-making Problem. The viability and flexibility of the suggested technique is explored with the help of a numerical example and the proposed results are compared with several existing approaches.

Abstract Image

使用复杂 q-rung 正对模糊交互聚合算子的多属性决策问题
复q-rung正对模糊集是表达不确定和模糊信息的一种重要方式,它优于复模糊集、复直觉模糊集、复pythagorean模糊集和复fermatean模糊集。本文将q-rung正对模糊集的概念扩展到复杂q-rung正对模糊集。交互聚合算子经常被用于各个领域,以解决多属性决策问题。通过利用算术算子和几何算子,一些著名的复 q-rung 正交模糊交互聚合算子,如复 q-rung 正交模糊交互加权平均算子、复 q-rung 正交模糊交互加权几何算子、复 q-环正交模糊交互阶加权算子、复 q-环正交模糊交互阶加权几何算子、复 q-环正交模糊交互混合算子和复 q-环正交模糊交互混合几何算子。此外,我们还研究了这些新建立的算子的一些独特性质。最后,我们探索了一种解决多属性决策问题的决策方法。我们借助一个数值示例探讨了所建议技术的可行性和灵活性,并将所建议的结果与现有的几种方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信