An Inertial Iterative Regularization Method for a Class of Variational Inequalities

IF 1.6 3区 数学 Q2 MATHEMATICS, APPLIED
Nguyen Buong, Nguyen Duong Nguyen, Nguyen Thi Quynh Anh
{"title":"An Inertial Iterative Regularization Method for a Class of Variational Inequalities","authors":"Nguyen Buong, Nguyen Duong Nguyen, Nguyen Thi Quynh Anh","doi":"10.1007/s10957-024-02443-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study a class of variational inequality problems the constraint set of which is the set of common solutions of a finite family of operator equations, involving hemi-continuous accretive operators on a reflexive and strictly convex Banach space with a Gâteaux differentiable norm. We present a sequential regularization method of Lavrentiev type and an iterative regularization one in combination with an inertial term to speed up convergence. The strong convergence of the methods is proved without the co-coercivity imposed on any operator in the family. An application of our results to solving the split common fixed point problem with pseudocontractive and nonexpansive operators is given with computational experiments for illustration.\n</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"56 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02443-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a class of variational inequality problems the constraint set of which is the set of common solutions of a finite family of operator equations, involving hemi-continuous accretive operators on a reflexive and strictly convex Banach space with a Gâteaux differentiable norm. We present a sequential regularization method of Lavrentiev type and an iterative regularization one in combination with an inertial term to speed up convergence. The strong convergence of the methods is proved without the co-coercivity imposed on any operator in the family. An application of our results to solving the split common fixed point problem with pseudocontractive and nonexpansive operators is given with computational experiments for illustration.

一类变分不等式的惯性迭代正则化方法
在本文中,我们研究了一类变分不等式问题,其约束集是有限算子方程组的公共解集,涉及反身严格凸巴纳赫空间上的半连续增量算子,具有伽托可微分规范。我们提出了一种拉夫连季耶夫式的连续正则化方法,以及一种结合惯性项加速收敛的迭代正则化方法。我们证明了这些方法的强收敛性,而无需对族中的任何算子施加协迫性。我们的结果还应用于解决具有伪收缩和非膨胀算子的分裂公共定点问题,并给出了计算实验作为说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
149
审稿时长
9.9 months
期刊介绍: The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信