The lower bound of weighted representation function

Pub Date : 2024-07-08 DOI:10.1007/s10998-024-00592-3
Shi-Qiang Chen
{"title":"The lower bound of weighted representation function","authors":"Shi-Qiang Chen","doi":"10.1007/s10998-024-00592-3","DOIUrl":null,"url":null,"abstract":"<p>For any given set <i>A</i> of nonnegative integers and for any given two positive integers <span>\\(k_1,k_2\\)</span>, <span>\\(R_{k_1,k_2}(A,n)\\)</span> is defined as the number of solutions of the equation <span>\\(n=k_1a_1+k_2a_2\\)</span> with <span>\\(a_1,a_2\\in A\\)</span>. In this paper, we prove that if integer <span>\\(k\\ge 2\\)</span> and set <span>\\(A\\subseteq {\\mathbb {N}}\\)</span> such that <span>\\(R_{1,k}(A,n)=R_{1,k}({\\mathbb {N}}\\setminus A,n)\\)</span> holds for all integers <span>\\(n\\ge n_0\\)</span>, then <span>\\(R_{1,k}(A,n)\\gg \\log n\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00592-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For any given set A of nonnegative integers and for any given two positive integers \(k_1,k_2\), \(R_{k_1,k_2}(A,n)\) is defined as the number of solutions of the equation \(n=k_1a_1+k_2a_2\) with \(a_1,a_2\in A\). In this paper, we prove that if integer \(k\ge 2\) and set \(A\subseteq {\mathbb {N}}\) such that \(R_{1,k}(A,n)=R_{1,k}({\mathbb {N}}\setminus A,n)\) holds for all integers \(n\ge n_0\), then \(R_{1,k}(A,n)\gg \log n\).

分享
查看原文
加权表示函数的下界
对于任意给定的非负整数集合 A 和任意给定的两个正整数 \(k_1,k_2\),\(R_{k_1,k_2}(A,n)\)被定义为方程 \(n=k_1a_1+k_2a_2\)的解的个数,其中 \(a_1,a_2\在 A\ 中)。在本文中,我们证明了如果整数(k/ge 2)和集合(A/subseteq {\mathbb {N}})使得(R_{1,k}(A,n)=R_{1,k}({\mathbb {N}}setminus A,n))对于所有整数(n/ge n_0)都成立,那么(R_{1,k}(A,n)gg \log n\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信