{"title":"The lower bound of weighted representation function","authors":"Shi-Qiang Chen","doi":"10.1007/s10998-024-00592-3","DOIUrl":null,"url":null,"abstract":"<p>For any given set <i>A</i> of nonnegative integers and for any given two positive integers <span>\\(k_1,k_2\\)</span>, <span>\\(R_{k_1,k_2}(A,n)\\)</span> is defined as the number of solutions of the equation <span>\\(n=k_1a_1+k_2a_2\\)</span> with <span>\\(a_1,a_2\\in A\\)</span>. In this paper, we prove that if integer <span>\\(k\\ge 2\\)</span> and set <span>\\(A\\subseteq {\\mathbb {N}}\\)</span> such that <span>\\(R_{1,k}(A,n)=R_{1,k}({\\mathbb {N}}\\setminus A,n)\\)</span> holds for all integers <span>\\(n\\ge n_0\\)</span>, then <span>\\(R_{1,k}(A,n)\\gg \\log n\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00592-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For any given set A of nonnegative integers and for any given two positive integers \(k_1,k_2\), \(R_{k_1,k_2}(A,n)\) is defined as the number of solutions of the equation \(n=k_1a_1+k_2a_2\) with \(a_1,a_2\in A\). In this paper, we prove that if integer \(k\ge 2\) and set \(A\subseteq {\mathbb {N}}\) such that \(R_{1,k}(A,n)=R_{1,k}({\mathbb {N}}\setminus A,n)\) holds for all integers \(n\ge n_0\), then \(R_{1,k}(A,n)\gg \log n\).