Bounded and homoclinic-like solutions of second-order singular difference equations

Pub Date : 2024-07-06 DOI:10.1007/s10998-024-00596-z
Ruyun Ma, Jiao Zhao
{"title":"Bounded and homoclinic-like solutions of second-order singular difference equations","authors":"Ruyun Ma, Jiao Zhao","doi":"10.1007/s10998-024-00596-z","DOIUrl":null,"url":null,"abstract":"<p>We are concerned with the existence of positive solutions for the boundary value problem </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} -D^{2}u(n-1)+c(n)Du(n)+a(n)u(n)=\\frac{b(n)}{(u(n))^p},&amp;{}\\quad n\\in \\mathbb {Z},\\\\ \\lim _{|n|\\rightarrow +\\infty }u(n)=0,\\\\ \\end{array}\\right. \\end{aligned}$$</span><p>where <span>\\(a,b:\\mathbb {Z}\\rightarrow \\mathbb {R}\\)</span>, <span>\\(c:\\mathbb {Z}\\rightarrow (0,1)\\)</span>, <span>\\(p&gt;0\\)</span>, and <i>D</i> is the forward difference operator. The main tools used are fixed point theorems of cone-compressing and cone-condensing type.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00596-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We are concerned with the existence of positive solutions for the boundary value problem

$$\begin{aligned} \left\{ \begin{array}{ll} -D^{2}u(n-1)+c(n)Du(n)+a(n)u(n)=\frac{b(n)}{(u(n))^p},&{}\quad n\in \mathbb {Z},\\ \lim _{|n|\rightarrow +\infty }u(n)=0,\\ \end{array}\right. \end{aligned}$$

where \(a,b:\mathbb {Z}\rightarrow \mathbb {R}\), \(c:\mathbb {Z}\rightarrow (0,1)\), \(p>0\), and D is the forward difference operator. The main tools used are fixed point theorems of cone-compressing and cone-condensing type.

分享
查看原文
二阶奇异差分方程的有界解和类同解
我们关注的是边界值问题 $$\begin{aligned} 的正解的存在性-D^{2}u(n-1)+c(n)Du(n)+a(n)u(n)=frac{b(n)}{(u(n))^p},&{}\quad n\in \mathbb {Z},\\lim _{|n|\rightarrow +\infty }u(n)=0,\\\end{array}\right.\end{aligned}$where \(a,b:\mathbb {Z}\rightarrow \mathbb {R}\), \(c:\mathbb {Z}\rightarrow (0,1)\), \(p>0\), and D is the forward difference operator.使用的主要工具是锥压缩和锥冷凝类型的定点定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信