{"title":"Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain","authors":"Michael Günther, Birgit Jacob, Claudia Totzeck","doi":"10.1007/s00498-024-00389-2","DOIUrl":null,"url":null,"abstract":"<p>We present a gradient-based calibration algorithm to identify the system matrices of a linear port-Hamiltonian system from given input–output time data. Aiming for a direct structure-preserving approach, we employ techniques from optimal control with ordinary differential equations and define a constrained optimization problem. The input-to-state stability is discussed which is the key step towards the existence of optimal controls. Further, we derive the first-order optimality system taking into account the port-Hamiltonian structure. Indeed, the proposed method preserves the skew symmetry and positive (semi)-definiteness of the system matrices throughout the optimization iterations. Numerical results with perturbed and unperturbed synthetic data, as well as an example from the PHS benchmark collection [17] demonstrate the feasibility of the approach.</p>","PeriodicalId":51123,"journal":{"name":"Mathematics of Control Signals and Systems","volume":"41 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Control Signals and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00498-024-00389-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a gradient-based calibration algorithm to identify the system matrices of a linear port-Hamiltonian system from given input–output time data. Aiming for a direct structure-preserving approach, we employ techniques from optimal control with ordinary differential equations and define a constrained optimization problem. The input-to-state stability is discussed which is the key step towards the existence of optimal controls. Further, we derive the first-order optimality system taking into account the port-Hamiltonian structure. Indeed, the proposed method preserves the skew symmetry and positive (semi)-definiteness of the system matrices throughout the optimization iterations. Numerical results with perturbed and unperturbed synthetic data, as well as an example from the PHS benchmark collection [17] demonstrate the feasibility of the approach.
期刊介绍:
Mathematics of Control, Signals, and Systems (MCSS) is an international journal devoted to mathematical control and system theory, including system theoretic aspects of signal processing.
Its unique feature is its focus on mathematical system theory; it concentrates on the mathematical theory of systems with inputs and/or outputs and dynamics that are typically described by deterministic or stochastic ordinary or partial differential equations, differential algebraic equations or difference equations.
Potential topics include, but are not limited to controllability, observability, and realization theory, stability theory of nonlinear systems, system identification, mathematical aspects of switched, hybrid, networked, and stochastic systems, and system theoretic aspects of optimal control and other controller design techniques. Application oriented papers are welcome if they contain a significant theoretical contribution.