Fractional Legendre wavelet approach resolving multi-scale optimal control problems involving Caputo-Fabrizio derivative

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Akanksha Singh, Ankur Kanaujiya, Jugal Mohapatra
{"title":"Fractional Legendre wavelet approach resolving multi-scale optimal control problems involving Caputo-Fabrizio derivative","authors":"Akanksha Singh, Ankur Kanaujiya, Jugal Mohapatra","doi":"10.1007/s11075-024-01871-3","DOIUrl":null,"url":null,"abstract":"<p>This article provides an effective numerical approach using the fractional integral operational matrix method for a fractional Legendre wavelet to deal with multi-dimensional fractional optimal control problems. We proposed operational matrices and implemented them to simplify multi-dimensional fractional optimal control problems into a set of equations, utilizing well-known formulas such as the Caputo-Fabrizio operator with a non-singular kernel defined for calculating fractional derivatives and integrals of fractional Legendre wavelets. Finally, the Lagrange multiplier technique is applied, and we get the state and control functions. The convergence analysis and error bounds of the proposed scheme are established. To check the veracity of the presented method, we tested numerical examples using the fractional Legendre wavelet method and obtained the cost function value based on identifying state and control functions.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"28 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01871-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This article provides an effective numerical approach using the fractional integral operational matrix method for a fractional Legendre wavelet to deal with multi-dimensional fractional optimal control problems. We proposed operational matrices and implemented them to simplify multi-dimensional fractional optimal control problems into a set of equations, utilizing well-known formulas such as the Caputo-Fabrizio operator with a non-singular kernel defined for calculating fractional derivatives and integrals of fractional Legendre wavelets. Finally, the Lagrange multiplier technique is applied, and we get the state and control functions. The convergence analysis and error bounds of the proposed scheme are established. To check the veracity of the presented method, we tested numerical examples using the fractional Legendre wavelet method and obtained the cost function value based on identifying state and control functions.

Abstract Image

用分数 Legendre 小波方法解决涉及 Caputo-Fabrizio 导数的多尺度优化控制问题
本文提供了一种有效的数值方法,利用分数 Legendre 小波的分数积分运算矩阵法来处理多维分数最优控制问题。我们提出了运算矩阵,并利用为计算分数 Legendre 小波的分数导数和积分而定义的带有非矢量核的 Caputo-Fabrizio 算子等著名公式,将多维分数最优控制问题简化为方程组。最后,应用拉格朗日乘法器技术,我们得到了状态和控制函数。建立了所提方案的收敛分析和误差边界。为了验证所提方法的正确性,我们使用分数 Legendre 小波方法对数值示例进行了测试,并在确定状态和控制函数的基础上获得了成本函数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信