Unconditionally positivity-preserving approximations of the Aït-Sahalia type model: Explicit Milstein-type schemes

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yingsong Jiang, Ruishu Liu, Xiaojie Wang, Jinghua Zhuo
{"title":"Unconditionally positivity-preserving approximations of the Aït-Sahalia type model: Explicit Milstein-type schemes","authors":"Yingsong Jiang, Ruishu Liu, Xiaojie Wang, Jinghua Zhuo","doi":"10.1007/s11075-024-01861-5","DOIUrl":null,"url":null,"abstract":"<p>The present article aims to design and analyze efficient first-order strong schemes for a generalized Aït-Sahalia type model arising in mathematical finance and evolving in a positive domain <span>\\((0, \\infty )\\)</span>, which possesses a diffusion term with superlinear growth and a highly nonlinear drift that blows up at the origin. Such a complicated structure of the model unavoidably causes essential difficulties in the construction and convergence analysis of time discretizations. By incorporating implicitness in the term <span>\\(\\alpha _{-1} x^{-1}\\)</span> and a corrective mapping <span>\\(\\Phi _h\\)</span> in the recursion, we develop a novel class of explicit and unconditionally positivity-preserving (i.e., for any step-size <span>\\(h&gt;0\\)</span>) Milstein-type schemes for the underlying model. In both non-critical and general critical cases, we introduce a novel approach to analyze mean-square error bounds of the novel schemes, without relying on a priori high-order moment bounds of the numerical approximations. The expected order-one mean-square convergence is attained for the proposed scheme. The above theoretical guarantee can be used to justify the optimal complexity of the Multilevel Monte Carlo method. Numerical experiments are finally provided to verify the theoretical findings.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01861-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The present article aims to design and analyze efficient first-order strong schemes for a generalized Aït-Sahalia type model arising in mathematical finance and evolving in a positive domain \((0, \infty )\), which possesses a diffusion term with superlinear growth and a highly nonlinear drift that blows up at the origin. Such a complicated structure of the model unavoidably causes essential difficulties in the construction and convergence analysis of time discretizations. By incorporating implicitness in the term \(\alpha _{-1} x^{-1}\) and a corrective mapping \(\Phi _h\) in the recursion, we develop a novel class of explicit and unconditionally positivity-preserving (i.e., for any step-size \(h>0\)) Milstein-type schemes for the underlying model. In both non-critical and general critical cases, we introduce a novel approach to analyze mean-square error bounds of the novel schemes, without relying on a priori high-order moment bounds of the numerical approximations. The expected order-one mean-square convergence is attained for the proposed scheme. The above theoretical guarantee can be used to justify the optimal complexity of the Multilevel Monte Carlo method. Numerical experiments are finally provided to verify the theoretical findings.

Abstract Image

艾特-萨哈利亚模型的无条件保正近似:米尔斯坦型显式方案
本文旨在设计和分析数学金融中出现的、在正域 \((0, \infty )\) 中演化的广义 Aït-Sahalia 型模型的高效一阶强方案,该模型具有超线性增长的扩散项和在原点炸毁的高度非线性漂移。如此复杂的模型结构不可避免地给时间离散的构建和收敛分析带来了极大的困难。通过在项 \(\α _{-1} x^{-1}\) 中加入隐含性以及在递归中加入校正映射 \(\Phi_h\),我们开发了一类新的显式和无条件保正的(即对于任意步长 \(h>0\))米尔斯坦型方案。的米尔斯坦类型方案。在非临界和一般临界情况下,我们引入了一种新方法来分析新方案的均方误差边界,而不依赖于数值近似的先验高阶矩边界。所提出的方案达到了预期的一阶均方收敛。上述理论保证可用于证明多级蒙特卡罗方法的最佳复杂性。最后还提供了数值实验来验证理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信