{"title":"Flexural-Gravity Waves in an Ice Cover Exited by Periodically Varying Moving Perturbations","authors":"Zh. V. Malenko, A. A. Yaroshenko","doi":"10.1134/S0015462824602213","DOIUrl":null,"url":null,"abstract":"<p>The vibrations of a floating ice cover under the action of moving disturbances of variable intensity are studied. The model of vibrations of a floating ice cover is based on the linearized fluid mechanics equations and the linear classical theory of vibrations of plates. The ice cover is considered as a thin elastic isotropic plate. The critical velocities at which the nature of the wave disturbances changes both in front of the disturbance source and behind it are determined. The critical velocities as functions of the source oscillation frequency are studied, six critical velocities being obtained. It is shown that from one to seven wave systems are formed depending on the velocity of the source and the frequency of its oscillations. The corner zones in which these waves are formed are determined. The effect of compression and tension forces on the critical velocities and the corner zones in which the waves propagate has been studied.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"59 3","pages":"415 - 426"},"PeriodicalIF":1.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462824602213","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The vibrations of a floating ice cover under the action of moving disturbances of variable intensity are studied. The model of vibrations of a floating ice cover is based on the linearized fluid mechanics equations and the linear classical theory of vibrations of plates. The ice cover is considered as a thin elastic isotropic plate. The critical velocities at which the nature of the wave disturbances changes both in front of the disturbance source and behind it are determined. The critical velocities as functions of the source oscillation frequency are studied, six critical velocities being obtained. It is shown that from one to seven wave systems are formed depending on the velocity of the source and the frequency of its oscillations. The corner zones in which these waves are formed are determined. The effect of compression and tension forces on the critical velocities and the corner zones in which the waves propagate has been studied.
期刊介绍:
Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.