Estimating the mean squared prediction error of the observed best predictor associated with small area counts: A computationally oriented approach

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Thuan Nguyen, Jiming Jiang
{"title":"Estimating the mean squared prediction error of the observed best predictor associated with small area counts: A computationally oriented approach","authors":"Thuan Nguyen,&nbsp;Jiming Jiang","doi":"10.1002/cjs.11810","DOIUrl":null,"url":null,"abstract":"<p>We consider estimation of the mean squared prediction error (MSPE) for observed best prediction (OBP) in small area estimation with count data. The OBP method has been previously developed in this context by Chen et al. (<i>Journal of Survey Statistics and Methodology</i>, 3, 136–161, 2015). However, estimation of the MSPE remains a challenging problem due to potential model misspecification that is considered in this setting. The latter authors proposed a bootstrap method for estimating the MSPE, whose theoretical justification is not clear. We propose to use a Prasad–Rao-type linearization method to estimate the MSPE. Unlike the traditional linearization approaches, our method is computationally oriented and easier to implement in the same regard. Theoretical properties and empirical performance of the proposed method are studied. A real-data application is considered.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"52 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11810","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider estimation of the mean squared prediction error (MSPE) for observed best prediction (OBP) in small area estimation with count data. The OBP method has been previously developed in this context by Chen et al. (Journal of Survey Statistics and Methodology, 3, 136–161, 2015). However, estimation of the MSPE remains a challenging problem due to potential model misspecification that is considered in this setting. The latter authors proposed a bootstrap method for estimating the MSPE, whose theoretical justification is not clear. We propose to use a Prasad–Rao-type linearization method to estimate the MSPE. Unlike the traditional linearization approaches, our method is computationally oriented and easier to implement in the same regard. Theoretical properties and empirical performance of the proposed method are studied. A real-data application is considered.

估算与小面积计数相关的观测最佳预测因子的均方预测误差:面向计算的方法
我们考虑在使用计数数据进行小面积估算时,对观测最佳预测(OBP)的均方预测误差(MSPE)进行估算。此前,Chen 等人已在此背景下开发了 OBP 方法(《调查统计与方法学期刊》,3,136-161,2015 年)。然而,由于在这种情况下要考虑潜在的模型错误规范,MSPE 的估计仍然是一个具有挑战性的问题。后一位作者提出了一种估计 MSPE 的 bootstrap 方法,但其理论依据并不明确。我们建议使用 Prasad-Rao 型线性化方法来估计 MSPE。与传统的线性化方法不同,我们的方法以计算为导向,更易于实现。我们研究了所提方法的理论特性和经验性能。还考虑了实际数据应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics. The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信