{"title":"Uncertainty Principles on Clifford Modules","authors":"Pan Lian","doi":"10.1007/s10114-024-2251-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we derive the optimal Cauchy–Schwarz inequalities on a class of Hilbert and Krein modules over a Clifford algebra, which heavily depend on the Clifford algebraic structure. The obtained inequalities further lead to very general uncertainty inequalities on these modules. Some new phenomena arise, due to the non-commutative nature, the Clifford-valued inner products and the Krein geometry. Taking into account applications, special attention is given to the Dirac operator and the Howe dual pair <span>\\(\\text{Pin}(m)\\times\\mathfrak{osp}(1\\vert2)\\)</span>. Moreover, it is surprisingly to find that the recent highly non-trivial uncertainty relation for triple observables is indeed a direct consequence of our Cauchy–Schwarz inequality. This new observation leads to refined uncertainty relations in terms of the Wigner–Yanase–Dyson skew information for mixed states and other generalizations. These show that the obtained uncertainty inequalities on Clifford modules can be considered as new uncertainty relations for multiple observables.</p>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10114-024-2251-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we derive the optimal Cauchy–Schwarz inequalities on a class of Hilbert and Krein modules over a Clifford algebra, which heavily depend on the Clifford algebraic structure. The obtained inequalities further lead to very general uncertainty inequalities on these modules. Some new phenomena arise, due to the non-commutative nature, the Clifford-valued inner products and the Krein geometry. Taking into account applications, special attention is given to the Dirac operator and the Howe dual pair \(\text{Pin}(m)\times\mathfrak{osp}(1\vert2)\). Moreover, it is surprisingly to find that the recent highly non-trivial uncertainty relation for triple observables is indeed a direct consequence of our Cauchy–Schwarz inequality. This new observation leads to refined uncertainty relations in terms of the Wigner–Yanase–Dyson skew information for mixed states and other generalizations. These show that the obtained uncertainty inequalities on Clifford modules can be considered as new uncertainty relations for multiple observables.
期刊介绍:
Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.