Minimization of Nonlinear Energies in Python Using FEM and Automatic Differentiation Tools

Michal Béreš, Jan Valdman
{"title":"Minimization of Nonlinear Energies in Python Using FEM and Automatic Differentiation Tools","authors":"Michal Béreš, Jan Valdman","doi":"arxiv-2407.04706","DOIUrl":null,"url":null,"abstract":"This contribution examines the capabilities of the Python ecosystem to solve\nnonlinear energy minimization problems, with a particular focus on\ntransitioning from traditional MATLAB methods to Python's advanced\ncomputational tools, such as automatic differentiation. We demonstrate Python's\nstreamlined approach to minimizing nonlinear energies by analyzing three\nproblem benchmarks - the p-Laplacian, the Ginzburg-Landau model, and the\nNeo-Hookean hyperelasticity. This approach merely requires the provision of the\nenergy functional itself, making it a simple and efficient way to solve this\ncategory of problems. The results show that the implementation is about ten\ntimes faster than the MATLAB implementation for large-scale problems. Our\nfindings highlight Python's efficiency and ease of use in scientific computing,\nestablishing it as a preferable choice for implementing sophisticated\nmathematical models and accelerating the development of numerical simulations.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.04706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This contribution examines the capabilities of the Python ecosystem to solve nonlinear energy minimization problems, with a particular focus on transitioning from traditional MATLAB methods to Python's advanced computational tools, such as automatic differentiation. We demonstrate Python's streamlined approach to minimizing nonlinear energies by analyzing three problem benchmarks - the p-Laplacian, the Ginzburg-Landau model, and the Neo-Hookean hyperelasticity. This approach merely requires the provision of the energy functional itself, making it a simple and efficient way to solve this category of problems. The results show that the implementation is about ten times faster than the MATLAB implementation for large-scale problems. Our findings highlight Python's efficiency and ease of use in scientific computing, establishing it as a preferable choice for implementing sophisticated mathematical models and accelerating the development of numerical simulations.
使用有限元和自动微分工具在 Python 中最小化非线性能量
这篇论文研究了 Python 生态系统解决非线性能量最小化问题的能力,尤其关注从传统的 MATLAB 方法到 Python 高级计算工具(如自动微分)的过渡。我们通过分析三个基准问题--p-Laplacian、Ginzburg-Landau 模型和Neo-Hookean 超弹性--展示了 Python 简化的非线性能量最小化方法。这种方法只需要提供能量函数本身,因此是解决这类问题的一种简单而有效的方法。结果表明,在解决大规模问题时,该方法的实现速度比 MATLAB 的实现速度快约十倍。我们的发现凸显了 Python 在科学计算中的高效性和易用性,使其成为实现复杂数学模型和加速数值模拟开发的首选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信