Energy Efficient Knapsack Optimization Using Probabilistic Memristor Crossbars

Jinzhan Li, Suhas Kumar, Su-in Yi
{"title":"Energy Efficient Knapsack Optimization Using Probabilistic Memristor Crossbars","authors":"Jinzhan Li, Suhas Kumar, Su-in Yi","doi":"arxiv-2407.04332","DOIUrl":null,"url":null,"abstract":"Constrained optimization underlies crucial societal problems (for instance,\nstock trading and bandwidth allocation), but is often computationally hard\n(complexity grows exponentially with problem size). The big-data era urgently\ndemands low-latency and low-energy optimization at the edge, which cannot be\nhandled by digital processors due to their non-parallel von Neumann\narchitecture. Recent efforts using massively parallel hardware (such as\nmemristor crossbars and quantum processors) employing annealing algorithms,\nwhile promising, have handled relatively easy and stable problems with sparse\nor binary representations (such as the max-cut or traveling salesman\nproblems).However, most real-world applications embody three features, which\nare encoded in the knapsack problem, and cannot be handled by annealing\nalgorithms - dense and non-binary representations, with destabilizing\nself-feedback. Here we demonstrate a post-digital-hardware-friendly randomized\ncompetitive Ising-inspired (RaCI) algorithm performing knapsack optimization,\nexperimentally implemented on a foundry-manufactured CMOS-integrated\nprobabilistic analog memristor crossbar. Our solution outperforms digital and\nquantum approaches by over 4 orders of magnitude in energy efficiency.","PeriodicalId":501168,"journal":{"name":"arXiv - CS - Emerging Technologies","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.04332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Constrained optimization underlies crucial societal problems (for instance, stock trading and bandwidth allocation), but is often computationally hard (complexity grows exponentially with problem size). The big-data era urgently demands low-latency and low-energy optimization at the edge, which cannot be handled by digital processors due to their non-parallel von Neumann architecture. Recent efforts using massively parallel hardware (such as memristor crossbars and quantum processors) employing annealing algorithms, while promising, have handled relatively easy and stable problems with sparse or binary representations (such as the max-cut or traveling salesman problems).However, most real-world applications embody three features, which are encoded in the knapsack problem, and cannot be handled by annealing algorithms - dense and non-binary representations, with destabilizing self-feedback. Here we demonstrate a post-digital-hardware-friendly randomized competitive Ising-inspired (RaCI) algorithm performing knapsack optimization, experimentally implemented on a foundry-manufactured CMOS-integrated probabilistic analog memristor crossbar. Our solution outperforms digital and quantum approaches by over 4 orders of magnitude in energy efficiency.
利用概率 Memristor 交叉条实现高能效 Knapsack 优化
受限优化是关键社会问题(如股票交易和带宽分配)的基础,但往往难以计算(复杂度随问题规模呈指数增长)。大数据时代迫切需要在边缘进行低延迟、低能耗的优化,而数字处理器的非并行冯-诺依曼体系结构无法解决这一问题。最近使用大规模并行硬件(如memristor crossbars 和量子处理器)的退火算法虽然很有前途,但只能处理稀疏或二进制表示的相对简单和稳定的问题(如最大切割问题或旅行推销员问题)。然而,现实世界中的大多数应用都体现了三个特征,即密集和非二进制表示,以及不稳定的自我反馈,而这些特征都被编码在了knapsack 问题中,退火算法无法处理这些问题。在这里,我们展示了一种对数字硬件友好的后随机竞争性伊辛启发(RaCI)算法,该算法在代工厂制造的 CMOS 集成非概率模拟忆阻器横梁上实验实现,可执行knapsack优化。我们的解决方案在能效方面超过数字和量子方法 4 个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信