A multi-scale no-reference video quality assessment method based on transformer

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yingan Cui, Zonghua Yu, Yuqin Feng, Huaijun Wang, Junhuai Li
{"title":"A multi-scale no-reference video quality assessment method based on transformer","authors":"Yingan Cui, Zonghua Yu, Yuqin Feng, Huaijun Wang, Junhuai Li","doi":"10.1007/s00530-024-01403-y","DOIUrl":null,"url":null,"abstract":"<p>Video quality assessment is essential for optimizing user experience, enhancing network efficiency, supporting video production and editing, improving advertising effectiveness, and strengthening security in monitoring and other domains. Reacting to the prevailing focus of current research on video detail distortion while overlooking the temporal relationships between video frames and the impact of content-dependent characteristics of the human visual system on video quality, this paper proposes a multi-scale no-reference video quality assessment method based on transformer. On the one hand, spatial features of the video are extracted using a network that combines swin-transformer and deformable convolution, and further information preservation is achieved through mixed pooling of features in video frames. On the other hand, a pyramid aggregation module is utilized to merge long-term and short-term memories, enhancing the ability to capture temporal changes. Experimental results on public datasets such as KoNViD-1k, CVD2014, and LIVE-VQC demonstrate the effectiveness of the proposed method in video quality prediction.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-024-01403-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Video quality assessment is essential for optimizing user experience, enhancing network efficiency, supporting video production and editing, improving advertising effectiveness, and strengthening security in monitoring and other domains. Reacting to the prevailing focus of current research on video detail distortion while overlooking the temporal relationships between video frames and the impact of content-dependent characteristics of the human visual system on video quality, this paper proposes a multi-scale no-reference video quality assessment method based on transformer. On the one hand, spatial features of the video are extracted using a network that combines swin-transformer and deformable convolution, and further information preservation is achieved through mixed pooling of features in video frames. On the other hand, a pyramid aggregation module is utilized to merge long-term and short-term memories, enhancing the ability to capture temporal changes. Experimental results on public datasets such as KoNViD-1k, CVD2014, and LIVE-VQC demonstrate the effectiveness of the proposed method in video quality prediction.

Abstract Image

基于变压器的多尺度无参考视频质量评估方法
视频质量评估对于优化用户体验、提高网络效率、支持视频制作和编辑、提高广告效果以及加强监控和其他领域的安全性至关重要。针对当前研究普遍关注视频细节失真,而忽视视频帧间的时间关系,以及人类视觉系统的内容依赖特性对视频质量的影响,本文提出了一种基于变换器的多尺度无参考视频质量评估方法。一方面,利用结合了swin-transformer和可变形卷积的网络提取视频的空间特征,并通过混合汇集视频帧中的特征进一步实现信息保存。另一方面,利用金字塔聚合模块合并长期记忆和短期记忆,增强捕捉时间变化的能力。在 KoNViD-1k、CVD2014 和 LIVE-VQC 等公开数据集上的实验结果表明了所提方法在视频质量预测中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信