Context-aware adaptive network for UDA semantic segmentation

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yu Yuan, Jinlong Shi, Xin Shu, Qiang Qian, Yunna Song, Zhen Ou, Dan Xu, Xin Zuo, YueCheng Yu, Yunhan Sun
{"title":"Context-aware adaptive network for UDA semantic segmentation","authors":"Yu Yuan, Jinlong Shi, Xin Shu, Qiang Qian, Yunna Song, Zhen Ou, Dan Xu, Xin Zuo, YueCheng Yu, Yunhan Sun","doi":"10.1007/s00530-024-01397-7","DOIUrl":null,"url":null,"abstract":"<p>Unsupervised Domain Adaptation (UDA) plays a pivotal role in enhancing the segmentation performance of models in the target domain by mitigating the domain shift between the source and target domains. However, Existing UDA image mix methods often overlook the contextual association between classes, limiting the segmentation capability of the model. To address this issue, we propose the context-aware adaptive network that enhances the model’s perception of contextual association information and maintains the contextual associations between different classes in mixed images, thereby improving the adaptability of the model. Firstly, we design a image mix strategy based on dynamic class correlation called DCCMix that constructs class correlation meta groups to preserve the contextual associations between different classes. Simultaneously, DCCMix dynamically adjusts the class proportion of the source domain within the mixed domain to gradually align with the distribution of the target domain, thereby improving training effectiveness. Secondly, the feature-wise fusion module and contextual feature-aware module are designed to better perceive contextual information of images and alleviate the issue of information loss during the feature extraction. Finally, we propose an adaptive class-edge weight to strengthen the segmentation ability of edge pixels in the model. Experimental results demonstrate that our proposed method achieves the mloU of 63.2% and 69.8% on two UDA benchmark tasks: SYNTHIA <span>\\(\\rightarrow\\)</span> Cityscapes and GTA <span>\\(\\rightarrow\\)</span> Cityscapes respectively. The code is available at https://github.com/yuheyuan/CAAN.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-024-01397-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Unsupervised Domain Adaptation (UDA) plays a pivotal role in enhancing the segmentation performance of models in the target domain by mitigating the domain shift between the source and target domains. However, Existing UDA image mix methods often overlook the contextual association between classes, limiting the segmentation capability of the model. To address this issue, we propose the context-aware adaptive network that enhances the model’s perception of contextual association information and maintains the contextual associations between different classes in mixed images, thereby improving the adaptability of the model. Firstly, we design a image mix strategy based on dynamic class correlation called DCCMix that constructs class correlation meta groups to preserve the contextual associations between different classes. Simultaneously, DCCMix dynamically adjusts the class proportion of the source domain within the mixed domain to gradually align with the distribution of the target domain, thereby improving training effectiveness. Secondly, the feature-wise fusion module and contextual feature-aware module are designed to better perceive contextual information of images and alleviate the issue of information loss during the feature extraction. Finally, we propose an adaptive class-edge weight to strengthen the segmentation ability of edge pixels in the model. Experimental results demonstrate that our proposed method achieves the mloU of 63.2% and 69.8% on two UDA benchmark tasks: SYNTHIA \(\rightarrow\) Cityscapes and GTA \(\rightarrow\) Cityscapes respectively. The code is available at https://github.com/yuheyuan/CAAN.

Abstract Image

用于 UDA 语义分割的语境感知自适应网络
无监督领域适应(UDA)通过减轻源领域和目标领域之间的领域偏移,在提高模型在目标领域的分割性能方面发挥着关键作用。然而,现有的 UDA 图像混合方法往往忽略了类之间的上下文关联,从而限制了模型的分割能力。为解决这一问题,我们提出了上下文感知自适应网络,它能增强模型对上下文关联信息的感知,并保持混合图像中不同类别之间的上下文关联,从而提高模型的自适应能力。首先,我们设计了一种基于动态类别相关性的图像混合策略,称为 DCCMix,它可以构建类别相关性元组,以保留不同类别之间的上下文关联。同时,DCCMix 会动态调整混合域中源域的类别比例,使其逐渐与目标域的分布相一致,从而提高训练效果。其次,设计了特征融合模块和上下文特征感知模块,以更好地感知图像的上下文信息,缓解特征提取过程中的信息丢失问题。最后,我们提出了自适应类边缘权重,以加强模型中边缘像素的分割能力。实验结果表明,我们提出的方法在两个 UDA 基准任务上的 mloU 分别达到了 63.2% 和 69.8%:城市景观》和《GTA 城市景观》。代码见 https://github.com/yuheyuan/CAAN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信