Crystal structure, supramolecular framework, hirshfeld surface analysis, and photophysical studies of some acridinium/acridine derivatives prepared by mechanochemical synthesis
{"title":"Crystal structure, supramolecular framework, hirshfeld surface analysis, and photophysical studies of some acridinium/acridine derivatives prepared by mechanochemical synthesis","authors":"Jagan Rajamoni, Saptarshi Datta, Jinjia Xu","doi":"10.1007/s11224-024-02355-9","DOIUrl":null,"url":null,"abstract":"<p>Four acridinium/acridine derivatives have been prepared by mechanochemical synthesis and their crystal structure, supramolecular framework, interaction energy calculation, thermal analysis, and photophysical properties are studied and presented in this manuscript. In the crystal structure, the one- and two-dimensional supramolecular framework is constructed via various strong and weak intermolecular interactions such as N‒H…Cl, O‒H…N, O‒H…Cl, C‒H…Cl, C‒H…O, C‒H…π, and π…π, respectively. The contribution of intermolecular interaction in the three-dimensional molecular packing is studied by the Hirshfeld surface analysis. The calculated total energy value of intermolecular interaction/contacts observed between the molecular pairs in the acridine compound is stronger than the energy value of intermolecular interaction/contacts of acridinium derivatives. The energy value of π…π contacts exhibited between the molecular pairs is significantly stronger than other weak interactions. The thermogravimetric analysis reveals that the acridinium derivatives degrade in three steps whereas the acridine compound undergoes a single-step degradation. Studies show that the acridinium derivatives exhibit a better photoluminescence quantum yield when compared to the acridine compound, and the acridine compound experiences a photoluminescence quenching due to charge transfer interactions.</p>","PeriodicalId":780,"journal":{"name":"Structural Chemistry","volume":"19 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11224-024-02355-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Four acridinium/acridine derivatives have been prepared by mechanochemical synthesis and their crystal structure, supramolecular framework, interaction energy calculation, thermal analysis, and photophysical properties are studied and presented in this manuscript. In the crystal structure, the one- and two-dimensional supramolecular framework is constructed via various strong and weak intermolecular interactions such as N‒H…Cl, O‒H…N, O‒H…Cl, C‒H…Cl, C‒H…O, C‒H…π, and π…π, respectively. The contribution of intermolecular interaction in the three-dimensional molecular packing is studied by the Hirshfeld surface analysis. The calculated total energy value of intermolecular interaction/contacts observed between the molecular pairs in the acridine compound is stronger than the energy value of intermolecular interaction/contacts of acridinium derivatives. The energy value of π…π contacts exhibited between the molecular pairs is significantly stronger than other weak interactions. The thermogravimetric analysis reveals that the acridinium derivatives degrade in three steps whereas the acridine compound undergoes a single-step degradation. Studies show that the acridinium derivatives exhibit a better photoluminescence quantum yield when compared to the acridine compound, and the acridine compound experiences a photoluminescence quenching due to charge transfer interactions.
期刊介绍:
Structural Chemistry is an international forum for the publication of peer-reviewed original research papers that cover the condensed and gaseous states of matter and involve numerous techniques for the determination of structure and energetics, their results, and the conclusions derived from these studies. The journal overcomes the unnatural separation in the current literature among the areas of structure determination, energetics, and applications, as well as builds a bridge to other chemical disciplines. Ist comprehensive coverage encompasses broad discussion of results, observation of relationships among various properties, and the description and application of structure and energy information in all domains of chemistry.
We welcome the broadest range of accounts of research in structural chemistry involving the discussion of methodologies and structures,experimental, theoretical, and computational, and their combinations. We encourage discussions of structural information collected for their chemicaland biological significance.