Elementary Formulas for Greatest Common Divisors and Semiprime Factors

Joseph M. Shunia
{"title":"Elementary Formulas for Greatest Common Divisors and Semiprime Factors","authors":"Joseph M. Shunia","doi":"arxiv-2407.03357","DOIUrl":null,"url":null,"abstract":"We present new formulas for computing greatest common divisors (GCDs) and\nextracting the prime factors of semiprimes using only elementary arithmetic\noperations: addition, subtraction, multiplication, floored division, and\nexponentiation. Our GCD formula simplifies a result of Mazzanti, and is derived\nusing Kronecker substitution techniques from our previous work. We utilize the\nGCD formula, along with recent developments on arithmetic terms for square\nroots and factorials, to derive explicit expressions for the prime factors of a\nsemiprime $n=pq$.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"156 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.03357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present new formulas for computing greatest common divisors (GCDs) and extracting the prime factors of semiprimes using only elementary arithmetic operations: addition, subtraction, multiplication, floored division, and exponentiation. Our GCD formula simplifies a result of Mazzanti, and is derived using Kronecker substitution techniques from our previous work. We utilize the GCD formula, along with recent developments on arithmetic terms for square roots and factorials, to derive explicit expressions for the prime factors of a semiprime $n=pq$.
最大公因数和半公因数的基本公式
我们提出了计算最大公约数(GCD)和提取半素数质因数的新公式,只需使用基本算术运算:加法、减法、乘法、浮点除法和幂级数。我们的 GCD 公式简化了马赞蒂的一个结果,是利用我们以前工作中的克朗内克置换技术推导出来的。我们利用 GCD 公式,以及方根和阶乘算术项的最新发展,推导出了数乘 $n=pq$ 的质因数的明确表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信