Ax, 3 polyominoes for tiling the plane non-periodically

Vincent Van Dongen, Pierre Gradit
{"title":"Ax, 3 polyominoes for tiling the plane non-periodically","authors":"Vincent Van Dongen, Pierre Gradit","doi":"arxiv-2407.06202","DOIUrl":null,"url":null,"abstract":"How do people come up with new sets of tiles including new tile shapes that\nwould only tile non-periodically? This paper presents our graphical journey in\ntilings and provides a new set of three polyominoes named Ax for its\nrelationship with Ammann A4.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.06202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

How do people come up with new sets of tiles including new tile shapes that would only tile non-periodically? This paper presents our graphical journey in tilings and provides a new set of three polyominoes named Ax for its relationship with Ammann A4.
Ax,3 个用于非周期性平铺平面的多面体
人们是如何想出新的瓦片集,包括新的瓦片形状,而这些瓦片只能非周期性地铺设?本文介绍了我们的绘制过程,并提供了一组新的三块多米诺骨牌,因其与安曼 A4 的关系而命名为 Ax。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信