V. Hakobyan, A. Sahakyan, H. A. Amirjanyan, L. Dashtoyan
{"title":"Axisymmetric Contact Problem for a Homogeneous Space with a Circular Disk-Shaped Crack Under Static Friction","authors":"V. Hakobyan, A. Sahakyan, H. A. Amirjanyan, L. Dashtoyan","doi":"10.1007/s10659-024-10078-5","DOIUrl":null,"url":null,"abstract":"<div><p>The paper considers an axisymmetric stress state of a homogeneous elastic space with a circular disc-shaped crack, one of the edges of which is pressed into a cylindrical circular stamp with static friction. It is assumed that the contact zone is considered under the generalized law of dry friction, i.e. tangential contact stresses are proportional to normal contact pressure, while the proportionality coefficient depends on the radial coordinates of the points of the contacting surfaces and is directly proportional to them. Considering the fact that in this case the Abel images of contact stresses are also related in a similar way, the solution of the problem, with the help of rotation operators and theory of analytical functions, is reduced to an inhomogeneous Riemann problem for two functions and the closed solution in quadratures is constructed. A numerical analysis was carried out and regularities of changes in both normal and shear real contact stresses, as well as rigid displacement of the stamp depending on the physical and geometric parameters were revealed.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"156 3","pages":"899 - 916"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-024-10078-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The paper considers an axisymmetric stress state of a homogeneous elastic space with a circular disc-shaped crack, one of the edges of which is pressed into a cylindrical circular stamp with static friction. It is assumed that the contact zone is considered under the generalized law of dry friction, i.e. tangential contact stresses are proportional to normal contact pressure, while the proportionality coefficient depends on the radial coordinates of the points of the contacting surfaces and is directly proportional to them. Considering the fact that in this case the Abel images of contact stresses are also related in a similar way, the solution of the problem, with the help of rotation operators and theory of analytical functions, is reduced to an inhomogeneous Riemann problem for two functions and the closed solution in quadratures is constructed. A numerical analysis was carried out and regularities of changes in both normal and shear real contact stresses, as well as rigid displacement of the stamp depending on the physical and geometric parameters were revealed.
期刊介绍:
The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.