Non-Hausdorff germinal groupoids for actions of countable groups

IF 0.5 4区 数学 Q3 MATHEMATICS
{"title":"Non-Hausdorff germinal groupoids for actions of countable groups","authors":"","doi":"10.1016/j.indag.2024.05.005","DOIUrl":null,"url":null,"abstract":"<div><div>We study conditions under which the germinal groupoid associated to a minimal equicontinuous action of a countable group on a Cantor set has non-Hausdorff topology. We develop a new criterion, which serves as an obstruction for the étale topology on the groupoid to be non-Hausdorff. We use this and other criteria to study the topology of germinal groupoids for a few classes of actions. In particular, we give examples of families of contracting and non-contracting self-similar groups, which are amenable and whose actions have associated germinal groupoids with non-Hausdorff topology.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 6","pages":"Pages 1149-1184"},"PeriodicalIF":0.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001935772400051X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study conditions under which the germinal groupoid associated to a minimal equicontinuous action of a countable group on a Cantor set has non-Hausdorff topology. We develop a new criterion, which serves as an obstruction for the étale topology on the groupoid to be non-Hausdorff. We use this and other criteria to study the topology of germinal groupoids for a few classes of actions. In particular, we give examples of families of contracting and non-contracting self-similar groups, which are amenable and whose actions have associated germinal groupoids with non-Hausdorff topology.
可数群作用的非豪斯多夫萌芽群形
我们研究了与康托集上可数群的最小等连续作用相关联的萌芽群具有非豪斯多夫拓扑的条件。我们提出了一个新标准,该标准阻碍了群上的埃塔拓扑为非豪斯多夫拓扑。我们利用这个标准和其他标准研究了几类作用的胚芽群拓扑学。特别是,我们举例说明了收缩和非收缩自相似群的家族,这些家族是可和的,其作用具有相关的非豪斯多夫拓扑的萌芽群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信