Shikimate pathway-Dependent Catabolism: enabling near-to-maximum production yield of aromatics

Lyon Bruinsma, Christos Batianis, Sara Moreno Paz, Kesi Kurnia, Job Dirkmaat, Alexandra Muller, Jose Juncosa Nunez, Ruud Weusthuis, Vitor A.P. Martins dos Santos
{"title":"Shikimate pathway-Dependent Catabolism: enabling near-to-maximum production yield of aromatics","authors":"Lyon Bruinsma, Christos Batianis, Sara Moreno Paz, Kesi Kurnia, Job Dirkmaat, Alexandra Muller, Jose Juncosa Nunez, Ruud Weusthuis, Vitor A.P. Martins dos Santos","doi":"10.1101/2024.07.06.602327","DOIUrl":null,"url":null,"abstract":"Catabolism is a complex network of tightly regulated metabolic reactions that provides energy and carbon to fuel anabolism in all living organisms. Rewiring catabolism is essential for harnessing industrial biotechnology but remains a substantial metabolic engineering challenge due to its high genetic stability and tight regulation acquired through evolution. In this study, by combining metabolic modeling, rational engineering, and adaptive laboratory evolution, we fundamentally redesigned bacterial catabolism. We created a new-to-nature shikimate pathway-dependent catabolism (SDC) in Pseudomonas putida by reprogramming the shikimate pathway as the primary catabolic route. SDC supports growth by supplying the glycerol catabolic end-product pyruvate, enabling superior production of shikimate pathway-derived molecules. Through SDC, aromatics production reached over 89% of the pathway's maximum theoretical yield, setting a new benchmark for their microbial synthesis. Our study successfully repurposed an anabolic pathway for catabolism, exemplifying the high metabolic plasticity of microbes and providing a bacterial chassis for the efficient production of high-added value compounds.","PeriodicalId":501408,"journal":{"name":"bioRxiv - Synthetic Biology","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.06.602327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Catabolism is a complex network of tightly regulated metabolic reactions that provides energy and carbon to fuel anabolism in all living organisms. Rewiring catabolism is essential for harnessing industrial biotechnology but remains a substantial metabolic engineering challenge due to its high genetic stability and tight regulation acquired through evolution. In this study, by combining metabolic modeling, rational engineering, and adaptive laboratory evolution, we fundamentally redesigned bacterial catabolism. We created a new-to-nature shikimate pathway-dependent catabolism (SDC) in Pseudomonas putida by reprogramming the shikimate pathway as the primary catabolic route. SDC supports growth by supplying the glycerol catabolic end-product pyruvate, enabling superior production of shikimate pathway-derived molecules. Through SDC, aromatics production reached over 89% of the pathway's maximum theoretical yield, setting a new benchmark for their microbial synthesis. Our study successfully repurposed an anabolic pathway for catabolism, exemplifying the high metabolic plasticity of microbes and providing a bacterial chassis for the efficient production of high-added value compounds.
依赖莽草酸途径的分解代谢:使芳香烃的产量接近最高水平
分解代谢是一个由严格调控的代谢反应组成的复杂网络,为所有生物体的合成代谢提供能量和碳。重新连接分解代谢对利用工业生物技术至关重要,但由于其高度的遗传稳定性和通过进化获得的严格调控,分解代谢仍然是代谢工程的巨大挑战。在这项研究中,我们将代谢建模、合理工程和适应性实验室进化相结合,从根本上重新设计了细菌的分解代谢。通过重新规划莽草酸途径作为主要分解途径,我们在假单胞菌(Pseudomonas putida)中创造了一种全新的依赖莽草酸途径的自然分解代谢(SDC)。SDC 通过提供甘油分解终产物丙酮酸来支持生长,从而实现莽草酸途径衍生分子的高产。通过 SDC,芳香烃的产量达到了该途径最大理论产量的 89% 以上,为其微生物合成设定了新的基准。我们的研究成功地将合成代谢途径重新用于分解代谢,体现了微生物代谢的高度可塑性,并为高效生产高附加值化合物提供了细菌底盘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信