Nonpositively Curved Surfaces are Loewner

Mikhail G. Katz, Stéphane Sabourau
{"title":"Nonpositively Curved Surfaces are Loewner","authors":"Mikhail G. Katz, Stéphane Sabourau","doi":"10.1007/s12220-024-01732-4","DOIUrl":null,"url":null,"abstract":"<p>We show that every closed nonpositively curved surface satisfies Loewner’s systolic inequality. The proof relies on a combination of the Gauss–Bonnet formula with an averaging argument using the invariance of the Liouville measure under the geodesic flow. This enables us to find a disk with large total curvature around its center yielding a large area.\n</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01732-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that every closed nonpositively curved surface satisfies Loewner’s systolic inequality. The proof relies on a combination of the Gauss–Bonnet formula with an averaging argument using the invariance of the Liouville measure under the geodesic flow. This enables us to find a disk with large total curvature around its center yielding a large area.

非正曲面是 Loewner
我们证明了每一个封闭的非正曲曲面都满足卢弗纳的收缩不等式。证明依赖于高斯-波内特公式与利用大地流下柳维尔量不变性的平均论证的结合。这使我们能够找到一个在其中心周围具有较大总曲率的圆盘,从而产生较大的面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信