Restriction Theorems and Strichartz Inequalities for the Laguerre Operator Involving Orthonormal Functions

Guoxia Feng, Manli Song
{"title":"Restriction Theorems and Strichartz Inequalities for the Laguerre Operator Involving Orthonormal Functions","authors":"Guoxia Feng, Manli Song","doi":"10.1007/s12220-024-01740-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove restriction theorems for the Fourier–Laguerre transform and establish Strichartz estimates for the Schrödinger propagator <span>\\(e^{-itL_\\alpha }\\)</span> for the Laguerre operator <span>\\(L_\\alpha =-\\Delta -\\sum _{j=1}^{n}(\\dfrac{2\\alpha _j+1}{x_j}\\dfrac{\\partial }{\\partial x_j})+\\dfrac{|x|^2}{4}\\)</span>, <span>\\(\\alpha =(\\alpha _1,\\alpha _2,\\ldots ,\\alpha _n)\\in {(-\\frac{1}{2},\\infty )^n}\\)</span> on <span>\\(\\mathbb {R}_+^n\\)</span> involving systems of orthonormal functions. The proof is based on a combination of some known dispersive estimate and the argument in Nakamura [Trans Am Math Soc 373(2), 1455–1476 (2020)] on torus. As an application, we obtain the global well-posedness for the nonlinear Laguerre–Hartree equation in Schatten space.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01740-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove restriction theorems for the Fourier–Laguerre transform and establish Strichartz estimates for the Schrödinger propagator \(e^{-itL_\alpha }\) for the Laguerre operator \(L_\alpha =-\Delta -\sum _{j=1}^{n}(\dfrac{2\alpha _j+1}{x_j}\dfrac{\partial }{\partial x_j})+\dfrac{|x|^2}{4}\), \(\alpha =(\alpha _1,\alpha _2,\ldots ,\alpha _n)\in {(-\frac{1}{2},\infty )^n}\) on \(\mathbb {R}_+^n\) involving systems of orthonormal functions. The proof is based on a combination of some known dispersive estimate and the argument in Nakamura [Trans Am Math Soc 373(2), 1455–1476 (2020)] on torus. As an application, we obtain the global well-posedness for the nonlinear Laguerre–Hartree equation in Schatten space.

涉及正交函数的拉盖尔算子的限制定理和斯特里查兹不等式
在本文中我们证明了傅立叶-拉盖尔变换的限制定理,并建立了薛定谔传播者(e^{-itL_\alpha }\) 的拉盖尔算子 \(L_\alpha =-\Delta -\sum _{j=1}^{n}(\dfrac{2\alpha _j+1}{x_j}\dfrac{partial }{partial x_j})+\dfrac{|x|^2}{4}\)、\(\alpha =(\alpha _1,\alpha _2,\ldots ,\alpha _n)\in {(-\frac{1}{2},\infty )^n}\) on \(\mathbb {R}_+^n\) involving systems of orthonormal functions.证明基于一些已知的分散估计和中村 [Trans Am Math Soc 373(2), 1455-1476 (2020)] 在环上的论证。作为应用,我们得到了沙腾空间中非线性拉盖尔-哈特里方程的全局好求性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信