Finite volume scheme and renormalized solutions for nonlinear elliptic Neumann problem with $$L^1$$ data

IF 1.4 2区 数学 Q1 MATHEMATICS
Calcolo Pub Date : 2024-07-06 DOI:10.1007/s10092-024-00602-3
Mirella Aoun, Olivier Guibé
{"title":"Finite volume scheme and renormalized solutions for nonlinear elliptic Neumann problem with $$L^1$$ data","authors":"Mirella Aoun, Olivier Guibé","doi":"10.1007/s10092-024-00602-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study the convergence of a finite volume approximation of a convective diffusive elliptic problem with Neumann boundary conditions and <span>\\(L^1\\)</span> data. To deal with the non-coercive character of the equation and the low regularity of the right hand-side we mix the finite volume tools and the renormalized techniques. To handle the Neumann boundary conditions we choose solutions having a null median and we prove a convergence result. We present also some numerical experiments in dimension 2 to illustrate the rate of convergence.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":"19 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcolo","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-024-00602-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the convergence of a finite volume approximation of a convective diffusive elliptic problem with Neumann boundary conditions and \(L^1\) data. To deal with the non-coercive character of the equation and the low regularity of the right hand-side we mix the finite volume tools and the renormalized techniques. To handle the Neumann boundary conditions we choose solutions having a null median and we prove a convergence result. We present also some numerical experiments in dimension 2 to illustrate the rate of convergence.

Abstract Image

具有 $L^1$$ 数据的非线性椭圆 Neumann 问题的有限体积方案和重规范化解
在本文中,我们研究了具有诺伊曼边界条件和 \(L^1\) 数据的对流扩散椭圆问题的有限体积近似的收敛性。为了处理方程的非强制特性和右侧的低正则性,我们混合使用了有限体积工具和重正化技术。为了处理诺伊曼边界条件,我们选择了具有空中值的解,并证明了收敛结果。我们还介绍了维度 2 中的一些数值实验,以说明收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Calcolo
Calcolo 数学-数学
CiteScore
2.40
自引率
11.80%
发文量
36
审稿时长
>12 weeks
期刊介绍: Calcolo is a quarterly of the Italian National Research Council, under the direction of the Institute for Informatics and Telematics in Pisa. Calcolo publishes original contributions in English on Numerical Analysis and its Applications, and on the Theory of Computation. The main focus of the journal is on Numerical Linear Algebra, Approximation Theory and its Applications, Numerical Solution of Differential and Integral Equations, Computational Complexity, Algorithmics, Mathematical Aspects of Computer Science, Optimization Theory. Expository papers will also appear from time to time as an introduction to emerging topics in one of the above mentioned fields. There will be a "Report" section, with abstracts of PhD Theses, news and reports from conferences and book reviews. All submissions will be carefully refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信