Covering Array on the Cartesian Product of Hypergraphs

IF 0.6 4区 数学 Q3 MATHEMATICS
Yasmeen Akhtar, Soumen Maity
{"title":"Covering Array on the Cartesian Product of Hypergraphs","authors":"Yasmeen Akhtar, Soumen Maity","doi":"10.1007/s00373-024-02813-5","DOIUrl":null,"url":null,"abstract":"<p>Covering array (CA) on a hypergraph <i>H</i> is a combinatorial object used in interaction testing of a complex system modeled as <i>H</i>. Given a <i>t</i>-uniform hypergraph <i>H</i> and positive integer <i>s</i>, it is an array with a column for each vertex having entries from a finite set of cardinality <i>s</i>, such as <span>\\(\\mathbb {Z}_s\\)</span>, and the property that any set of <i>t</i> columns that correspond to vertices in a hyperedge covers all <span>\\(s^t\\)</span> ordered <i>t</i>-tuples from <span>\\(\\mathbb {Z}_s^t\\)</span> at least once as a row. Minimizing the number of rows (size) of CA is important in industrial applications. Given a hypergraph <i>H</i>, a CA on <i>H</i> with the minimum size is called optimal. Determining the minimum size of CA on a hypergraph is NP-hard. We focus on constructions that make optimal covering arrays on large hypergraphs from smaller ones and discuss the construction method for optimal CA on the Cartesian product of a Cayley hypergraph with different families of hypergraphs. For a prime power <span>\\(q&gt;2\\)</span>, we present a polynomial-time approximation algorithm with approximation ratio <span>\\(\\left( \\Big \\lceil \\log _q\\left( \\frac{|V|}{3^{k-1}}\\right) \\Big \\rceil \\right) ^2\\)</span> for constructing covering array <i>CA</i>(<i>n</i>, <i>H</i>, <i>q</i>) on 3-uniform hypergraph <span>\\(H=(V,E)\\)</span> with <span>\\(k&gt;1\\)</span> prime factors with respect to the Cartesian product.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"15 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02813-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Covering array (CA) on a hypergraph H is a combinatorial object used in interaction testing of a complex system modeled as H. Given a t-uniform hypergraph H and positive integer s, it is an array with a column for each vertex having entries from a finite set of cardinality s, such as \(\mathbb {Z}_s\), and the property that any set of t columns that correspond to vertices in a hyperedge covers all \(s^t\) ordered t-tuples from \(\mathbb {Z}_s^t\) at least once as a row. Minimizing the number of rows (size) of CA is important in industrial applications. Given a hypergraph H, a CA on H with the minimum size is called optimal. Determining the minimum size of CA on a hypergraph is NP-hard. We focus on constructions that make optimal covering arrays on large hypergraphs from smaller ones and discuss the construction method for optimal CA on the Cartesian product of a Cayley hypergraph with different families of hypergraphs. For a prime power \(q>2\), we present a polynomial-time approximation algorithm with approximation ratio \(\left( \Big \lceil \log _q\left( \frac{|V|}{3^{k-1}}\right) \Big \rceil \right) ^2\) for constructing covering array CA(nHq) on 3-uniform hypergraph \(H=(V,E)\) with \(k>1\) prime factors with respect to the Cartesian product.

Abstract Image

超图笛卡儿积上的覆盖阵列
超图 H 上的覆盖数组(CA)是一种组合对象,用于以 H 为模型的复杂系统的交互测试。给定一个 t-uniform 超图 H 和正整数 s,它是一个数组,每个顶点有一列,列中的条目来自一个有限的 cardinality s 集,如 \(\mathbb {Z}_s\) ,其特性是:任何与超图中顶点相对应的 t 列集至少覆盖一次 \(\mathbb {Z}_s^t\) 中的所有 \(s^t\) 有序 t 元组作为一行。最小化 CA 的行数(大小)在工业应用中非常重要。给定一个超图 H,H 上具有最小大小的 CA 称为最优 CA。确定超图上 CA 的最小大小是 NP 难。我们将重点放在用较小的超图在大型超图上建立最优覆盖阵列的构造上,并讨论在 Cayley 超图与不同超图族的笛卡尔积上建立最优 CA 的方法。对于质幂 \(q>;2),我们提出了一种多项式时间近似算法,其近似率为((\left( \Big \lceil \log _q\left( \frac{|V|}{3^{k-1}}\right) \Big \rceil \right) ^2),用于在具有(k>;1)关于笛卡尔积的素因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信