A. Agrawal, V. V. Alenkov, P. Aryal, J. Beyer, B. Bhandari, R. S. Boiko, K. Boonin, O. Buzanov, C. R. Byeon, N. Chanthima, M. K. Cheoun, J. S. Choe, Seonho Choi, S. Choudhury, J. S. Chung, F. A. Danevich, M. Djamal, D. Drung, C. Enss, A. Fleischmann, A. M. Gangapshev, L. Gastaldo, Y. M. Gavrilyuk, A. M. Gezhaev, O. Gileva, V. D. Grigorieva, V. I. Gurentsov, C. Ha, D. H. Ha, E. J. Ha, D. H. Hwang, E. J. Jeon, J. A. Jeon, H. S. Jo, J. Kaewkhao, C. S. Kang, W. G. Kang, V. V. Kazalov, S. Kempf, A. Khan, S. Khan, D. Y. Kim, G. W. Kim, H. B. Kim, Ho-Jong Kim, H. J. Kim, H. L. Kim, H. S. Kim, M. B. Kim, S. C. Kim, S. K. Kim, S. R. Kim, W. T. Kim, Y. D. Kim, Y. H. Kim, K. Kirdsiri, Y. J. Ko, V. V. Kobychev, V. Kornoukhov, V. V. Kuzminov, D. H. Kwon, C. H. Lee, DongYeup Lee, E. K. Lee, H. J. Lee, H. S. Lee, J. Lee, J. Y. Lee, K. B. Lee, M. H. Lee, M. K. Lee, S. W. Lee, Y. C. Lee, D. S. Leonard, H. S. Lim, B. Mailyan, E. P. Makarov, P. Nyanda, Y. Oh, S. L. Olsen, S. I. Panasenko, H. K. Park, H. S. Park, K. S. Park, S. Y. Park, O. G. Polischuk, H. Prihtiadi, S. Ra, S. S. Ratkevich, G. Rooh, M. B. Sari, J. Seo, K. M. Seo, B. Sharma, K. A. Shin, V. N. Shlegel, K. Siyeon, J. So, N. V. Sokur, J. K. Son, J. W. Song, N. Srisittipokakun, V. I. Tretyak, R. Wirawan, K. R. Woo, H. J. Yeon, Y. S. Yoon, Q. Yue
{"title":"Improved limit on neutrinoless double beta decay of \\mohundred~from AMoRE-I","authors":"A. Agrawal, V. V. Alenkov, P. Aryal, J. Beyer, B. Bhandari, R. S. Boiko, K. Boonin, O. Buzanov, C. R. Byeon, N. Chanthima, M. K. Cheoun, J. S. Choe, Seonho Choi, S. Choudhury, J. S. Chung, F. A. Danevich, M. Djamal, D. Drung, C. Enss, A. Fleischmann, A. M. Gangapshev, L. Gastaldo, Y. M. Gavrilyuk, A. M. Gezhaev, O. Gileva, V. D. Grigorieva, V. I. Gurentsov, C. Ha, D. H. Ha, E. J. Ha, D. H. Hwang, E. J. Jeon, J. A. Jeon, H. S. Jo, J. Kaewkhao, C. S. Kang, W. G. Kang, V. V. Kazalov, S. Kempf, A. Khan, S. Khan, D. Y. Kim, G. W. Kim, H. B. Kim, Ho-Jong Kim, H. J. Kim, H. L. Kim, H. S. Kim, M. B. Kim, S. C. Kim, S. K. Kim, S. R. Kim, W. T. Kim, Y. D. Kim, Y. H. Kim, K. Kirdsiri, Y. J. Ko, V. V. Kobychev, V. Kornoukhov, V. V. Kuzminov, D. H. Kwon, C. H. Lee, DongYeup Lee, E. K. Lee, H. J. Lee, H. S. Lee, J. Lee, J. Y. Lee, K. B. Lee, M. H. Lee, M. K. Lee, S. W. Lee, Y. C. Lee, D. S. Leonard, H. S. Lim, B. Mailyan, E. P. Makarov, P. Nyanda, Y. Oh, S. L. Olsen, S. I. Panasenko, H. K. Park, H. S. Park, K. S. Park, S. Y. Park, O. G. Polischuk, H. Prihtiadi, S. Ra, S. S. Ratkevich, G. Rooh, M. B. Sari, J. Seo, K. M. Seo, B. Sharma, K. A. Shin, V. N. Shlegel, K. Siyeon, J. So, N. V. Sokur, J. K. Son, J. W. Song, N. Srisittipokakun, V. I. Tretyak, R. Wirawan, K. R. Woo, H. J. Yeon, Y. S. Yoon, Q. Yue","doi":"arxiv-2407.05618","DOIUrl":null,"url":null,"abstract":"AMoRE searches for the signature of neutrinoless double beta decay of\n$^{100}$Mo with a 100 kg sample of enriched $^{100}$Mo. Scintillating molybdate\ncrystals coupled with a metallic magnetic calorimeter operate at milli-Kelvin\ntemperatures to measure the energy of electrons emitted in the decay. As a\ndemonstration of the full-scale AMoRE, we conducted AMoRE-I, a pre-experiment\nwith 18 molybdate crystals, at the Yangyang Underground Laboratory for over two\nyears. The exposure was 8.02 kg$\\cdot$year (or 3.89\nkg$_{\\mathrm{^{100}Mo}}\\cdot$year) and the total background rate near the\nQ-value was 0.025 $\\pm$ 0.002 counts/keV/kg/year. We observed no indication of\n$0\\nu\\beta\\beta$ decay and report a new lower limit of the half-life of\n$^{100}$Mo $0\\nu\\beta\\beta$ decay as $\nT^{0\\nu}_{1/2}>3.0\\times10^{24}~\\mathrm{years}$ at 90\\% confidence level. The\neffective Majorana mass limit range is $m_{\\beta\\beta}<$(210--610) meV using\nnuclear matrix elements estimated in the framework of different models,\nincluding the recent shell model calculations.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Nuclear Experiment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.05618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
AMoRE searches for the signature of neutrinoless double beta decay of
$^{100}$Mo with a 100 kg sample of enriched $^{100}$Mo. Scintillating molybdate
crystals coupled with a metallic magnetic calorimeter operate at milli-Kelvin
temperatures to measure the energy of electrons emitted in the decay. As a
demonstration of the full-scale AMoRE, we conducted AMoRE-I, a pre-experiment
with 18 molybdate crystals, at the Yangyang Underground Laboratory for over two
years. The exposure was 8.02 kg$\cdot$year (or 3.89
kg$_{\mathrm{^{100}Mo}}\cdot$year) and the total background rate near the
Q-value was 0.025 $\pm$ 0.002 counts/keV/kg/year. We observed no indication of
$0\nu\beta\beta$ decay and report a new lower limit of the half-life of
$^{100}$Mo $0\nu\beta\beta$ decay as $
T^{0\nu}_{1/2}>3.0\times10^{24}~\mathrm{years}$ at 90\% confidence level. The
effective Majorana mass limit range is $m_{\beta\beta}<$(210--610) meV using
nuclear matrix elements estimated in the framework of different models,
including the recent shell model calculations.