Synergy of Polydopamine-Assisted Additive Modification and Hierarchical-Morphology Poly(Vinylidene Fluoride) Nanofiber Mat for Ferroelectric-Assisted Triboelectric Nanogenerator
IF 17.2 1区 工程技术Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Junseo Gu, Donghyun Lee, Jeonghoon Oh, Hyeokjun Si, Kwanlae Kim
{"title":"Synergy of Polydopamine-Assisted Additive Modification and Hierarchical-Morphology Poly(Vinylidene Fluoride) Nanofiber Mat for Ferroelectric-Assisted Triboelectric Nanogenerator","authors":"Junseo Gu, Donghyun Lee, Jeonghoon Oh, Hyeokjun Si, Kwanlae Kim","doi":"10.1007/s42765-024-00461-1","DOIUrl":null,"url":null,"abstract":"<div><p>In the last decade, numerous physical modification methods have been introduced to enhance triboelectric nanogenerator (TENG) performance although they generally require complex and multiple fabrication processes. This study proposes a facile fabrication process for Poly(vinylidene fluoride) (PVDF) nanofiber (NF) mats incorporating additive and nonadditive physical modifications. Patterned PVDF NF mats are prepared by electrospinning using a metal mesh as the NF collector. As a negative triboelectric material, the TENG with the patterned PVDF NF mat exhibits superior performance owing to the engineered morphology of the contact layer. PVDF is crucial in TENGs owing to its superior ferroelectric properties and surface charge density when combined with specific electroceramics. Hence, the synergy of the physical modification methods is achieved by incorporating BaTiO<sub>3</sub> (BTO) nanoparticles (NPs) into the PVDF. By functionalizing BTO NPs with polydopamine, the TENG performance is further improved owing to the enhanced dispersion of NPs and improved crystallinity of the PVDF chains. Utilizing large NPs produces a nanopatterning effect on the NF surface, thereby resulting in the hierarchical structure of the NF mats. The source of the voltage signals from the TENG is analyzed using fast Fourier transform.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 6","pages":"1910 - 1926"},"PeriodicalIF":17.2000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00461-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the last decade, numerous physical modification methods have been introduced to enhance triboelectric nanogenerator (TENG) performance although they generally require complex and multiple fabrication processes. This study proposes a facile fabrication process for Poly(vinylidene fluoride) (PVDF) nanofiber (NF) mats incorporating additive and nonadditive physical modifications. Patterned PVDF NF mats are prepared by electrospinning using a metal mesh as the NF collector. As a negative triboelectric material, the TENG with the patterned PVDF NF mat exhibits superior performance owing to the engineered morphology of the contact layer. PVDF is crucial in TENGs owing to its superior ferroelectric properties and surface charge density when combined with specific electroceramics. Hence, the synergy of the physical modification methods is achieved by incorporating BaTiO3 (BTO) nanoparticles (NPs) into the PVDF. By functionalizing BTO NPs with polydopamine, the TENG performance is further improved owing to the enhanced dispersion of NPs and improved crystallinity of the PVDF chains. Utilizing large NPs produces a nanopatterning effect on the NF surface, thereby resulting in the hierarchical structure of the NF mats. The source of the voltage signals from the TENG is analyzed using fast Fourier transform.
期刊介绍:
Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al.
Publishing on fiber or fiber-related materials, technology, engineering and application.