Sequences of operator algebras converging to odd spheres in the quantum Gromov–Hausdorff distance

Tirthankar Bhattacharyya, Sushil Singla
{"title":"Sequences of operator algebras converging to odd spheres in the quantum Gromov–Hausdorff distance","authors":"Tirthankar Bhattacharyya, Sushil Singla","doi":"10.1007/s13226-024-00635-y","DOIUrl":null,"url":null,"abstract":"<p>Marc Rieffel had introduced the notion of the quantum Gromov–Hausdorff distance on compact quantum metric spaces and found a sequence of matrix algebras that converges to the space of continuous functions on 2-sphere in this distance. One finds applications of similar approximations in many places in the theoretical physics literature. In this paper, we have defined a compact quantum metric space structure on the sequence of Toeplitz algebras on generalized Bergman spaces and have proved that the sequence converges to the space of continuous functions on odd spheres in the quantum Gromov–Hausdorff distance.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00635-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Marc Rieffel had introduced the notion of the quantum Gromov–Hausdorff distance on compact quantum metric spaces and found a sequence of matrix algebras that converges to the space of continuous functions on 2-sphere in this distance. One finds applications of similar approximations in many places in the theoretical physics literature. In this paper, we have defined a compact quantum metric space structure on the sequence of Toeplitz algebras on generalized Bergman spaces and have proved that the sequence converges to the space of continuous functions on odd spheres in the quantum Gromov–Hausdorff distance.

在量子格罗莫夫-豪斯多夫距离中收敛于奇数球的算子代数序列
马克-里费尔(Marc Rieffel)在紧凑量子度量空间上引入了量子格罗莫夫-豪斯多夫距离(quantum Gromov-Hausdorff distance)的概念,并发现了一个矩阵代数序列,在这个距离上收敛于 2 球上的连续函数空间。在理论物理学的许多文献中,我们都能找到类似近似的应用。在本文中,我们在广义伯格曼空间上的托普利兹数列上定义了一种紧凑量子度量空间结构,并证明了该数列在量子格罗莫夫-豪斯多夫距离内收敛于奇数球上的连续函数空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信