Differentials on Forested and Hairy Graph Complexes with Dishonest Hairs

Nicolas Grunder
{"title":"Differentials on Forested and Hairy Graph Complexes with Dishonest Hairs","authors":"Nicolas Grunder","doi":"arxiv-2407.05326","DOIUrl":null,"url":null,"abstract":"We study the cohomology of forested graph complexes with ordered and\nunordered hairs whose cohomology computes the cohomology of a family of groups\n$\\Gamma_{g,r}$ that generalize the (outer) automorphism group of free groups.\nWe give examples and a recipe for constructing additional differentials on\nthese complexes. These differentials can be used to construct spectral\nsequences that start with the cohomology of the standard complexes. We focus on\none such sequence that relates cohomology classes of graphs with different\nnumbers of hairs and compute its limit.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.05326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the cohomology of forested graph complexes with ordered and unordered hairs whose cohomology computes the cohomology of a family of groups $\Gamma_{g,r}$ that generalize the (outer) automorphism group of free groups. We give examples and a recipe for constructing additional differentials on these complexes. These differentials can be used to construct spectral sequences that start with the cohomology of the standard complexes. We focus on one such sequence that relates cohomology classes of graphs with different numbers of hairs and compute its limit.
有不诚实毛发的森林图和毛发图复合物上的差分
我们研究具有有序和无序发丝的森林图复合体的同调,这些复合体的同调计算了一个组$\Gamma_{g,r}$族的同调,这个组概括了自由组的(外)自变群。我们给出了在这些复数上构造附加微分的例子和方法。这些微分可用于构造以标准复数的同调为起点的谱序列。我们将重点讨论这样一个序列,它将具有不同毛数的图的同调类联系起来,并计算其极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信