Hidden structures behind ambient symmetries of the Maurer-Cartan equation

Vladimir Dotsenko, Sergey Shadrin
{"title":"Hidden structures behind ambient symmetries of the Maurer-Cartan equation","authors":"Vladimir Dotsenko, Sergey Shadrin","doi":"arxiv-2407.06589","DOIUrl":null,"url":null,"abstract":"For every differential graded Lie algebra $\\mathfrak{g}$ one can define two\ndifferent group actions on the Maurer-Cartan elements: the ubiquitous gauge\naction and the action of $\\mathrm{Lie}_\\infty$-isotopies of $\\mathfrak{g}$,\nwhich we call the ambient action. In this note, we explain how the assertion of\ngauge triviality of a homologically trivial ambient action relates to the\ncalculus of dendriform, Zinbiel, and Rota-Baxter algebras, and to Eulerian\nidempotents. In particular, we exhibit new relationships between these\nalgebraic structures and the operad of rational functions defined by Loday.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.06589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For every differential graded Lie algebra $\mathfrak{g}$ one can define two different group actions on the Maurer-Cartan elements: the ubiquitous gauge action and the action of $\mathrm{Lie}_\infty$-isotopies of $\mathfrak{g}$, which we call the ambient action. In this note, we explain how the assertion of gauge triviality of a homologically trivial ambient action relates to the calculus of dendriform, Zinbiel, and Rota-Baxter algebras, and to Eulerian idempotents. In particular, we exhibit new relationships between these algebraic structures and the operad of rational functions defined by Loday.
毛勒-卡尔坦方程环境对称性背后的隐藏结构
对于每一个微分级联代数 $\mathfrak{g}$,我们都可以在毛勒-卡尔坦元素上定义两种不同的群作用:无处不在的量规作用和 $\mathrm{Lie}_\infty$-isotopies of $\mathfrak{g}$的作用,我们称之为环境作用。在本注释中,我们将解释同源琐碎环境作用的几何琐碎性断言是如何与树枝形、津比尔和罗塔-巴克斯特代数以及欧拉幂等的计算相关联的。特别是,我们展示了这些代数结构与洛代定义的有理函数操作数之间的新关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信