Asymptotic integrability of nonlinear wave equations

A. M. Kamchatnov
{"title":"Asymptotic integrability of nonlinear wave equations","authors":"A. M. Kamchatnov","doi":"arxiv-2407.04244","DOIUrl":null,"url":null,"abstract":"We introduce the notion of asymptotic integrability into the theory of\nnonlinear wave equations. It means that the Hamiltonian structure of equations\ndescribing propagation of high-frequency wave packets is preserved by\nhydrodynamic evolution of the large-scale background wave, so that these\nequations have an additional integral of motion. This condition is expressed\nmathematically as a system of equations for the carrier wave number as a\nfunction of the background variables. We show that a solution of this system\nfor a given dispersion relation of linear waves is related with the\nquasiclassical limit of the Lax pair for the completely integrable equation\nhaving the corresponding dispersionless and linear dispersive behavior. We\nillustrate the theory by several examples.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.04244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the notion of asymptotic integrability into the theory of nonlinear wave equations. It means that the Hamiltonian structure of equations describing propagation of high-frequency wave packets is preserved by hydrodynamic evolution of the large-scale background wave, so that these equations have an additional integral of motion. This condition is expressed mathematically as a system of equations for the carrier wave number as a function of the background variables. We show that a solution of this system for a given dispersion relation of linear waves is related with the quasiclassical limit of the Lax pair for the completely integrable equation having the corresponding dispersionless and linear dispersive behavior. We illustrate the theory by several examples.
非线性波方程的渐近可整性
我们在非线性波方程理论中引入了渐近可整性的概念。这意味着描述高频波包传播的方程的哈密顿结构在大尺度背景波的流体动力学演化中得到保留,因此这些方程具有额外的运动积分。这一条件可以用载波数与背景变量的函数关系的方程组来表示。我们证明,对于给定的线性波色散关系,该方程组的解与具有相应的无色散和线性色散行为的完全可积分方程的拉克斯对的类经典极限相关。我们通过几个例子来证明这一理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信