Pattern dynamics of the non-reciprocal Swift-Hohenberg model

Yuta Tateyama, Hiroaki Ito, Shigeyuki Komura, Hiroyuki Kitahata
{"title":"Pattern dynamics of the non-reciprocal Swift-Hohenberg model","authors":"Yuta Tateyama, Hiroaki Ito, Shigeyuki Komura, Hiroyuki Kitahata","doi":"arxiv-2407.05742","DOIUrl":null,"url":null,"abstract":"We investigate the pattern dynamics of the one-dimensional non-reciprocal\nSwift-Hohenberg model. Characteristic spatiotemporal patterns, such as\ndisordered, aligned, swap, chiral-swap, and chiral phases, emerge depending on\nthe parameters. We classify the characteristic spatiotemporal patterns obtained\nin the numerical simulations by focusing on the spatiotemporal Fourier spectrum\nof the order parameters. We derive a reduced dynamical system by using the\nspatial Fourier series expansion. We analyze the bifurcation structure around\nthe fixed points corresponding to the aligned and chiral phases and explain the\ntransitions between them. The disordered phase is destabilized either to the\naligned phase or to the chiral phase by the Turing bifurcation or the wave\nbifurcation, and the aligned phase and the chiral phase are connected by the\npitchfork bifurcation.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.05742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the pattern dynamics of the one-dimensional non-reciprocal Swift-Hohenberg model. Characteristic spatiotemporal patterns, such as disordered, aligned, swap, chiral-swap, and chiral phases, emerge depending on the parameters. We classify the characteristic spatiotemporal patterns obtained in the numerical simulations by focusing on the spatiotemporal Fourier spectrum of the order parameters. We derive a reduced dynamical system by using the spatial Fourier series expansion. We analyze the bifurcation structure around the fixed points corresponding to the aligned and chiral phases and explain the transitions between them. The disordered phase is destabilized either to the aligned phase or to the chiral phase by the Turing bifurcation or the wave bifurcation, and the aligned phase and the chiral phase are connected by the pitchfork bifurcation.
非互惠斯威夫特-霍恩伯格模型的模式动力学
我们研究了一维非互惠的斯威夫特-霍恩伯格模型的模式动力学。根据参数的不同,会出现一些特征性的时空模式,如无序相、对齐相、交换相、手性交换相和手性相。我们通过关注阶次参数的时空傅里叶谱,对数值模拟中获得的特征时空模式进行了分类。我们利用空间傅里叶级数展开推导出一个简化的动力系统。我们分析了与排列相和手性相相对应的固定点周围的分岔结构,并解释了它们之间的转换。无序相通过图灵分岔或波分岔失稳到对齐相或手性相,而对齐相和手性相通过间距叉分岔相连。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信