Santiago Arango-Piñeros, Deewang Bhamidipati, Soumya Sankar
{"title":"Frobenius Distributions of Low Dimensional Abelian Varieties Over Finite Fields","authors":"Santiago Arango-Piñeros, Deewang Bhamidipati, Soumya Sankar","doi":"10.1093/imrn/rnae148","DOIUrl":null,"url":null,"abstract":"Given a $g$-dimensional abelian variety $A$ over a finite field $\\mathbf{F}_{q}$, the Weil conjectures imply that the normalized Frobenius eigenvalues generate a multiplicative group of rank at most $g$. The Pontryagin dual of this group is a compact abelian Lie group that controls the distribution of high powers of the Frobenius endomorphism. This group, which we call the Serre–Frobenius group, encodes the possible multiplicative relations between the Frobenius eigenvalues. In this article, we classify all possible Serre–Frobenius groups that occur for $g \\le 3$. We also give a partial classification for simple ordinary abelian varieties of prime dimension $g\\geq 3$.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"6 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae148","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a $g$-dimensional abelian variety $A$ over a finite field $\mathbf{F}_{q}$, the Weil conjectures imply that the normalized Frobenius eigenvalues generate a multiplicative group of rank at most $g$. The Pontryagin dual of this group is a compact abelian Lie group that controls the distribution of high powers of the Frobenius endomorphism. This group, which we call the Serre–Frobenius group, encodes the possible multiplicative relations between the Frobenius eigenvalues. In this article, we classify all possible Serre–Frobenius groups that occur for $g \le 3$. We also give a partial classification for simple ordinary abelian varieties of prime dimension $g\geq 3$.
期刊介绍:
International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.