Frobenius Distributions of Low Dimensional Abelian Varieties Over Finite Fields

Pub Date : 2024-07-06 DOI:10.1093/imrn/rnae148
Santiago Arango-Piñeros, Deewang Bhamidipati, Soumya Sankar
{"title":"Frobenius Distributions of Low Dimensional Abelian Varieties Over Finite Fields","authors":"Santiago Arango-Piñeros, Deewang Bhamidipati, Soumya Sankar","doi":"10.1093/imrn/rnae148","DOIUrl":null,"url":null,"abstract":"Given a $g$-dimensional abelian variety $A$ over a finite field $\\mathbf{F}_{q}$, the Weil conjectures imply that the normalized Frobenius eigenvalues generate a multiplicative group of rank at most $g$. The Pontryagin dual of this group is a compact abelian Lie group that controls the distribution of high powers of the Frobenius endomorphism. This group, which we call the Serre–Frobenius group, encodes the possible multiplicative relations between the Frobenius eigenvalues. In this article, we classify all possible Serre–Frobenius groups that occur for $g \\le 3$. We also give a partial classification for simple ordinary abelian varieties of prime dimension $g\\geq 3$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a $g$-dimensional abelian variety $A$ over a finite field $\mathbf{F}_{q}$, the Weil conjectures imply that the normalized Frobenius eigenvalues generate a multiplicative group of rank at most $g$. The Pontryagin dual of this group is a compact abelian Lie group that controls the distribution of high powers of the Frobenius endomorphism. This group, which we call the Serre–Frobenius group, encodes the possible multiplicative relations between the Frobenius eigenvalues. In this article, we classify all possible Serre–Frobenius groups that occur for $g \le 3$. We also give a partial classification for simple ordinary abelian varieties of prime dimension $g\geq 3$.
分享
查看原文
有限域上低维阿贝尔变种的 Frobenius 分布
给定有限域$\mathbf{F}_{q}$上的$g$维无性杂交$A$,韦尔猜想意味着归一化弗罗贝纽斯特征值生成一个秩最多$g$的乘法群。这个群的庞特里亚金对偶群是一个紧凑的非良性李群,它控制着弗罗贝纽斯内态高次幂的分布。我们称这个群为塞雷-弗罗贝尼斯群,它编码了弗罗贝尼斯特征值之间可能存在的乘法关系。在本文中,我们对 $g \le 3$ 时可能出现的所有 Serre-Frobenius 群进行了分类。我们还给出了素维 $g\geq 3$ 的简单普通无性变体的部分分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信