{"title":"Viscous Regularization of the MHD Equations","authors":"Tuan Anh Dao, Lukas Lundgren, Murtazo Nazarov","doi":"10.1137/23m1564274","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Mathematics, Volume 84, Issue 4, Page 1439-1459, August 2024. <br/> Abstract. Nonlinear conservation laws such as the system of ideal magnetohydrodynamics (MHD) equations may develop singularities over time. In these situations, viscous regularization is a common approach to regain regularity of the solution. In this paper, we present a new viscous flux to regularize the MHD equations that holds many attractive properties. In particular, we prove that the proposed viscous flux preserves positivity of density and internal energy, satisfies the minimum entropy principle, is consistent with all generalized entropies, and is Galilean and rotationally invariant. We also provide a variation of the viscous flux that conserves angular momentum. To make the analysis more useful for numerical schemes, the divergence of the magnetic field is not assumed to be zero. Using continuous finite elements, we show several numerical experiments, including contact waves and magnetic reconnection.","PeriodicalId":51149,"journal":{"name":"SIAM Journal on Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1564274","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Applied Mathematics, Volume 84, Issue 4, Page 1439-1459, August 2024. Abstract. Nonlinear conservation laws such as the system of ideal magnetohydrodynamics (MHD) equations may develop singularities over time. In these situations, viscous regularization is a common approach to regain regularity of the solution. In this paper, we present a new viscous flux to regularize the MHD equations that holds many attractive properties. In particular, we prove that the proposed viscous flux preserves positivity of density and internal energy, satisfies the minimum entropy principle, is consistent with all generalized entropies, and is Galilean and rotationally invariant. We also provide a variation of the viscous flux that conserves angular momentum. To make the analysis more useful for numerical schemes, the divergence of the magnetic field is not assumed to be zero. Using continuous finite elements, we show several numerical experiments, including contact waves and magnetic reconnection.
期刊介绍:
SIAM Journal on Applied Mathematics (SIAP) is an interdisciplinary journal containing research articles that treat scientific problems using methods that are of mathematical interest. Appropriate subject areas include the physical, engineering, financial, and life sciences. Examples are problems in fluid mechanics, including reaction-diffusion problems, sedimentation, combustion, and transport theory; solid mechanics; elasticity; electromagnetic theory and optics; materials science; mathematical biology, including population dynamics, biomechanics, and physiology; linear and nonlinear wave propagation, including scattering theory and wave propagation in random media; inverse problems; nonlinear dynamics; and stochastic processes, including queueing theory. Mathematical techniques of interest include asymptotic methods, bifurcation theory, dynamical systems theory, complex network theory, computational methods, and probabilistic and statistical methods.