Transitive generalized toggle groups containing a cycle

IF 0.6 3区 数学 Q3 MATHEMATICS
Jonathan S. Bloom, Dan Saracino
{"title":"Transitive generalized toggle groups containing a cycle","authors":"Jonathan S. Bloom, Dan Saracino","doi":"10.1007/s10801-024-01348-5","DOIUrl":null,"url":null,"abstract":"<p>In (Striker in Discret Math Theor Comput Sci 20, 2018), Striker generalized Cameron and Fon-Der-Flaass’s notion of a toggle group. In this paper, we begin the study of transitive generalized toggle groups that contain a cycle. We first show that if such a group has degree <i>n</i> and contains a transposition or a 3-cycle, then the group contains <span>\\(A_n\\)</span>. Using the result about transpositions, we then prove that a transitive generalized toggle group that contains a short cycle must be primitive. Employing a result of Jones (Bull Aust Math Soc 89(1):159-165, 2014), which relies on the classification of the finite simple groups, we conclude that any transitive generalized toggle group of degree <i>n</i> that contains a cycle with at least 3 fixed points must also contain <span>\\(A_n\\)</span>. Finally, we look at imprimitive generalized toggle groups containing a long cycle and show that they decompose into a direct product of primitive generalized toggle groups each containing a long cycle.</p>","PeriodicalId":14926,"journal":{"name":"Journal of Algebraic Combinatorics","volume":"19 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01348-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In (Striker in Discret Math Theor Comput Sci 20, 2018), Striker generalized Cameron and Fon-Der-Flaass’s notion of a toggle group. In this paper, we begin the study of transitive generalized toggle groups that contain a cycle. We first show that if such a group has degree n and contains a transposition or a 3-cycle, then the group contains \(A_n\). Using the result about transpositions, we then prove that a transitive generalized toggle group that contains a short cycle must be primitive. Employing a result of Jones (Bull Aust Math Soc 89(1):159-165, 2014), which relies on the classification of the finite simple groups, we conclude that any transitive generalized toggle group of degree n that contains a cycle with at least 3 fixed points must also contain \(A_n\). Finally, we look at imprimitive generalized toggle groups containing a long cycle and show that they decompose into a direct product of primitive generalized toggle groups each containing a long cycle.

包含一个循环的传递广义切换群
在(Striker in Discret Math Theor Comput Sci 20, 2018)一文中,Striker 广义了 Cameron 和 Fon-Der-Flaass 的拨动群概念。在本文中,我们开始研究包含一个循环的传递广义拨动群。我们首先证明,如果这样一个群的度数为 n,并且包含一个转置或一个 3 循环,那么这个群就包含 \(A_n\)。利用关于转置的结果,我们证明了包含短循环的广义肘旋群一定是原始群。利用琼斯(Bull Aust Math Soc 89(1):159-165,2014)的一个结果(该结果依赖于有限简单群的分类),我们得出结论:任何包含至少 3 个固定点的循环的 n 度传递广义拨动群也必须包含 \(A_n\)。最后,我们研究了包含一个长周期的imprimitive广义拨动群,并证明它们分解为原始广义拨动群的直接乘积,每个原始广义拨动群都包含一个长周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
94
审稿时长
6-12 weeks
期刊介绍: The Journal of Algebraic Combinatorics provides a single forum for papers on algebraic combinatorics which, at present, are distributed throughout a number of journals. Within the last decade or so, algebraic combinatorics has evolved into a mature, established and identifiable area of mathematics. Research contributions in the field are increasingly seen to have substantial links with other areas of mathematics. The journal publishes papers in which combinatorics and algebra interact in a significant and interesting fashion. This interaction might occur through the study of combinatorial structures using algebraic methods, or the application of combinatorial methods to algebraic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信