Transitive generalized toggle groups containing a cycle

Pub Date : 2024-07-05 DOI:10.1007/s10801-024-01348-5
Jonathan S. Bloom, Dan Saracino
{"title":"Transitive generalized toggle groups containing a cycle","authors":"Jonathan S. Bloom, Dan Saracino","doi":"10.1007/s10801-024-01348-5","DOIUrl":null,"url":null,"abstract":"<p>In (Striker in Discret Math Theor Comput Sci 20, 2018), Striker generalized Cameron and Fon-Der-Flaass’s notion of a toggle group. In this paper, we begin the study of transitive generalized toggle groups that contain a cycle. We first show that if such a group has degree <i>n</i> and contains a transposition or a 3-cycle, then the group contains <span>\\(A_n\\)</span>. Using the result about transpositions, we then prove that a transitive generalized toggle group that contains a short cycle must be primitive. Employing a result of Jones (Bull Aust Math Soc 89(1):159-165, 2014), which relies on the classification of the finite simple groups, we conclude that any transitive generalized toggle group of degree <i>n</i> that contains a cycle with at least 3 fixed points must also contain <span>\\(A_n\\)</span>. Finally, we look at imprimitive generalized toggle groups containing a long cycle and show that they decompose into a direct product of primitive generalized toggle groups each containing a long cycle.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01348-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In (Striker in Discret Math Theor Comput Sci 20, 2018), Striker generalized Cameron and Fon-Der-Flaass’s notion of a toggle group. In this paper, we begin the study of transitive generalized toggle groups that contain a cycle. We first show that if such a group has degree n and contains a transposition or a 3-cycle, then the group contains \(A_n\). Using the result about transpositions, we then prove that a transitive generalized toggle group that contains a short cycle must be primitive. Employing a result of Jones (Bull Aust Math Soc 89(1):159-165, 2014), which relies on the classification of the finite simple groups, we conclude that any transitive generalized toggle group of degree n that contains a cycle with at least 3 fixed points must also contain \(A_n\). Finally, we look at imprimitive generalized toggle groups containing a long cycle and show that they decompose into a direct product of primitive generalized toggle groups each containing a long cycle.

分享
查看原文
包含一个循环的传递广义切换群
在(Striker in Discret Math Theor Comput Sci 20, 2018)一文中,Striker 广义了 Cameron 和 Fon-Der-Flaass 的拨动群概念。在本文中,我们开始研究包含一个循环的传递广义拨动群。我们首先证明,如果这样一个群的度数为 n,并且包含一个转置或一个 3 循环,那么这个群就包含 \(A_n\)。利用关于转置的结果,我们证明了包含短循环的广义肘旋群一定是原始群。利用琼斯(Bull Aust Math Soc 89(1):159-165,2014)的一个结果(该结果依赖于有限简单群的分类),我们得出结论:任何包含至少 3 个固定点的循环的 n 度传递广义拨动群也必须包含 \(A_n\)。最后,我们研究了包含一个长周期的imprimitive广义拨动群,并证明它们分解为原始广义拨动群的直接乘积,每个原始广义拨动群都包含一个长周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信