{"title":"Transitive generalized toggle groups containing a cycle","authors":"Jonathan S. Bloom, Dan Saracino","doi":"10.1007/s10801-024-01348-5","DOIUrl":null,"url":null,"abstract":"<p>In (Striker in Discret Math Theor Comput Sci 20, 2018), Striker generalized Cameron and Fon-Der-Flaass’s notion of a toggle group. In this paper, we begin the study of transitive generalized toggle groups that contain a cycle. We first show that if such a group has degree <i>n</i> and contains a transposition or a 3-cycle, then the group contains <span>\\(A_n\\)</span>. Using the result about transpositions, we then prove that a transitive generalized toggle group that contains a short cycle must be primitive. Employing a result of Jones (Bull Aust Math Soc 89(1):159-165, 2014), which relies on the classification of the finite simple groups, we conclude that any transitive generalized toggle group of degree <i>n</i> that contains a cycle with at least 3 fixed points must also contain <span>\\(A_n\\)</span>. Finally, we look at imprimitive generalized toggle groups containing a long cycle and show that they decompose into a direct product of primitive generalized toggle groups each containing a long cycle.</p>","PeriodicalId":14926,"journal":{"name":"Journal of Algebraic Combinatorics","volume":"19 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01348-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In (Striker in Discret Math Theor Comput Sci 20, 2018), Striker generalized Cameron and Fon-Der-Flaass’s notion of a toggle group. In this paper, we begin the study of transitive generalized toggle groups that contain a cycle. We first show that if such a group has degree n and contains a transposition or a 3-cycle, then the group contains \(A_n\). Using the result about transpositions, we then prove that a transitive generalized toggle group that contains a short cycle must be primitive. Employing a result of Jones (Bull Aust Math Soc 89(1):159-165, 2014), which relies on the classification of the finite simple groups, we conclude that any transitive generalized toggle group of degree n that contains a cycle with at least 3 fixed points must also contain \(A_n\). Finally, we look at imprimitive generalized toggle groups containing a long cycle and show that they decompose into a direct product of primitive generalized toggle groups each containing a long cycle.
期刊介绍:
The Journal of Algebraic Combinatorics provides a single forum for papers on algebraic combinatorics which, at present, are distributed throughout a number of journals. Within the last decade or so, algebraic combinatorics has evolved into a mature, established and identifiable area of mathematics. Research contributions in the field are increasingly seen to have substantial links with other areas of mathematics.
The journal publishes papers in which combinatorics and algebra interact in a significant and interesting fashion. This interaction might occur through the study of combinatorial structures using algebraic methods, or the application of combinatorial methods to algebraic problems.