The strongly robust simplicial complex of monomial curves

Pub Date : 2024-07-09 DOI:10.1007/s10801-024-01349-4
Dimitra Kosta, Apostolos Thoma, Marius Vladoiu
{"title":"The strongly robust simplicial complex of monomial curves","authors":"Dimitra Kosta, Apostolos Thoma, Marius Vladoiu","doi":"10.1007/s10801-024-01349-4","DOIUrl":null,"url":null,"abstract":"<p>To every simple toric ideal <span>\\(I_T\\)</span> one can associate the strongly robust simplicial complex <span>\\(\\Delta _T\\)</span>, which determines the strongly robust property for all ideals that have <span>\\(I_T\\)</span> as their bouquet ideal. We show that for the simple toric ideals of monomial curves in <span>\\(\\mathbb {A}^{s}\\)</span>, the strongly robust simplicial complex <span>\\(\\Delta _T\\)</span> is either <span>\\(\\{\\emptyset \\}\\)</span> or contains exactly one 0-dimensional face. In the case of monomial curves in <span>\\(\\mathbb {A}^{3}\\)</span>, the strongly robust simplicial complex <span>\\(\\Delta _T\\)</span> contains one 0-dimensional face if and only if the toric ideal <span>\\(I_T\\)</span> is a complete intersection ideal with exactly two Betti degrees. Finally, we provide a construction to produce infinitely many strongly robust ideals with bouquet ideal the ideal of a monomial curve and show that they are all produced this way.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01349-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To every simple toric ideal \(I_T\) one can associate the strongly robust simplicial complex \(\Delta _T\), which determines the strongly robust property for all ideals that have \(I_T\) as their bouquet ideal. We show that for the simple toric ideals of monomial curves in \(\mathbb {A}^{s}\), the strongly robust simplicial complex \(\Delta _T\) is either \(\{\emptyset \}\) or contains exactly one 0-dimensional face. In the case of monomial curves in \(\mathbb {A}^{3}\), the strongly robust simplicial complex \(\Delta _T\) contains one 0-dimensional face if and only if the toric ideal \(I_T\) is a complete intersection ideal with exactly two Betti degrees. Finally, we provide a construction to produce infinitely many strongly robust ideals with bouquet ideal the ideal of a monomial curve and show that they are all produced this way.

分享
查看原文
单项式曲线的强健简并复合体
对于每一个简单环理想 \(I_T\) ,我们都可以联想到强稳健简单复数 \(\Delta_T\),它决定了所有以 \(I_T\) 作为花束理想的理想的强稳健性质。我们证明,对于 \(\mathbb {A}^{s}\) 中的单项式曲线的简单环形理想,强稳健简单复数 \(\Delta _T\) 要么是 \(\{emptyset \}\) 要么包含恰好一个 0 维面。在 \(\mathbb {A}^{3}\) 中的单项式曲线的情况下,当且仅当环形理想 \(I_T\) 是一个具有两个贝蒂度的完全交集理想时,强健单纯形复数 \(\Delta _T\) 才包含一个 0 维面。最后,我们提供了一种构造来产生无限多的强健理想,它们的花束理想都是单项式曲线的理想,并证明它们都是这样产生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信