Tubes containing string modules in symmetric special multiserial algebras

Pub Date : 2024-07-08 DOI:10.1007/s10801-024-01339-6
Drew Damien Duffield
{"title":"Tubes containing string modules in symmetric special multiserial algebras","authors":"Drew Damien Duffield","doi":"10.1007/s10801-024-01339-6","DOIUrl":null,"url":null,"abstract":"<p>Symmetric special multiserial algebras are algebras that correspond to decorated hypergraphs with orientation, called Brauer configurations. In this paper, we use the combinatorics of Brauer configurations to understand the module category of symmetric special multiserial algebras via their Auslander–Reiten quiver. In particular, we provide methods for determining the existence and ranks of tubes in the stable Auslander–Reiten quiver of symmetric special multiserial algebras using only the information from the underlying Brauer configuration. Firstly, we define a combinatorial walk around the Brauer configuration, called a Green ‘hyperwalk’, which generalises the existing notion of a Green walk around a Brauer graph. Periodic Green hyperwalks are then shown to correspond to periodic projective resolutions of certain classes of string modules over the corresponding symmetric special multiserial algebra. Periodic Green hyperwalks thus determine certain classes of tubes in the stable Auslander–Reiten quiver, with the ranks of the tubes determined by the periods of the walks. Finally, we provide a description of additional rank two tubes in symmetric special multiserial algebras that do not arise from Green hyperwalks, but which nevertheless contain string modules at the mouth. This includes an explicit description of the space of extensions between string modules at the mouth of tubes of rank two.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01339-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Symmetric special multiserial algebras are algebras that correspond to decorated hypergraphs with orientation, called Brauer configurations. In this paper, we use the combinatorics of Brauer configurations to understand the module category of symmetric special multiserial algebras via their Auslander–Reiten quiver. In particular, we provide methods for determining the existence and ranks of tubes in the stable Auslander–Reiten quiver of symmetric special multiserial algebras using only the information from the underlying Brauer configuration. Firstly, we define a combinatorial walk around the Brauer configuration, called a Green ‘hyperwalk’, which generalises the existing notion of a Green walk around a Brauer graph. Periodic Green hyperwalks are then shown to correspond to periodic projective resolutions of certain classes of string modules over the corresponding symmetric special multiserial algebra. Periodic Green hyperwalks thus determine certain classes of tubes in the stable Auslander–Reiten quiver, with the ranks of the tubes determined by the periods of the walks. Finally, we provide a description of additional rank two tubes in symmetric special multiserial algebras that do not arise from Green hyperwalks, but which nevertheless contain string modules at the mouth. This includes an explicit description of the space of extensions between string modules at the mouth of tubes of rank two.

Abstract Image

分享
查看原文
对称特殊多子代数中包含弦模块的管子
对称特殊多轴代数是与有方向的装饰超图相对应的代数,称为布劳尔构型。在本文中,我们利用布劳尔构型的组合学,通过其奥斯兰德-莱腾四维空间来理解对称特殊多塞尔代数的模块范畴。特别是,我们提供了仅利用底层布劳尔构型的信息来确定对称特殊多子代数的稳定奥斯兰德-莱腾四维空间中管的存在性和级的方法。首先,我们定义了一种围绕布劳尔构型的组合行走,称为绿色 "超行走",它概括了现有的围绕布劳尔图的绿色行走概念。然后,我们证明周期性绿色超步对应于相应对称特殊多塞尔代数上某些弦模块类别的周期性投影决议。因此,周期性绿超走决定了稳定的奥斯兰德-雷腾四维空间中的某些管类,而管类的等级则由走的周期决定。最后,我们描述了对称特殊多塞尔代数中的额外二级管,这些管不是由格林超走产生的,但在管口包含弦模块。这包括明确描述二阶管口弦模块之间的扩展空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信