{"title":"Optimality analysis for $$\\epsilon $$ -quasi solutions of optimization problems via $$\\epsilon $$ -upper convexificators: a dual approach","authors":"Tran Van Su","doi":"10.1007/s10898-024-01415-y","DOIUrl":null,"url":null,"abstract":"<p>The theory of duality is of fundamental importance in the study of vector optimization problems and vector equilibrium problems. A Mond–Weir-type dual model for such problems is important in practice. Therefore, studying such problems with a dual approach is really useful and necessary in the literature. The goal of this article is to formulate Mond–Weir-type dual models for the minimization problem (P), the constrained vector optimization problem (CVOP) and the constrained vector equilibrium problem (CVEP) in terms of <span>\\(\\epsilon \\)</span>-upper convexificators. By applying the concept of <span>\\(\\epsilon \\)</span>-pseudoconvexity, some weak, strong and converse duality theorems for the primal problem (P) and its dual problem (DP), the primal vector optimization problem (CVOP) and its Mond–Weir-type dual problem (MWCVOP), the primal vector equilibrium problem (P) and its Mond–Weir-type dual problem (MWCVEP) are explored.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01415-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The theory of duality is of fundamental importance in the study of vector optimization problems and vector equilibrium problems. A Mond–Weir-type dual model for such problems is important in practice. Therefore, studying such problems with a dual approach is really useful and necessary in the literature. The goal of this article is to formulate Mond–Weir-type dual models for the minimization problem (P), the constrained vector optimization problem (CVOP) and the constrained vector equilibrium problem (CVEP) in terms of \(\epsilon \)-upper convexificators. By applying the concept of \(\epsilon \)-pseudoconvexity, some weak, strong and converse duality theorems for the primal problem (P) and its dual problem (DP), the primal vector optimization problem (CVOP) and its Mond–Weir-type dual problem (MWCVOP), the primal vector equilibrium problem (P) and its Mond–Weir-type dual problem (MWCVEP) are explored.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.