Sarah A. Alzakari, Amel Ali Alhussan, Al-Seyday T. Qenawy, Ahmed M. Elshewey
{"title":"Early Detection of Potato Disease Using an Enhanced Convolutional Neural Network-Long Short-Term Memory Deep Learning Model","authors":"Sarah A. Alzakari, Amel Ali Alhussan, Al-Seyday T. Qenawy, Ahmed M. Elshewey","doi":"10.1007/s11540-024-09760-x","DOIUrl":null,"url":null,"abstract":"<p>Potato diseases pose a significant threat to farmers, impacting potato crops’ productivity, quality, and financial stability. Among the most notorious diseases is late blight, caused by <i>Phytophthora infestans</i>, famously responsible for triggering the Irish Potato Famine in the 1840s. Late blight swiftly devastates potato foliage and tubers, particularly in damp, humid conditions. Another common disease is early blight, attributed to <i>Alternaria solani</i>. This disease affects various parts of the potato plant—leaves, stems, and tubers. It mainly shows up in the form of dark stains around the center of a bull’s eye on the leaves, bringing down both the yield and the crop quality. A model consisting of a Convolutional Neural Network - Long Short-Term Memory (CNN-LSTM) enhanced for potato disease detection was proposed in our paper. The dataset used was Z-score standardized before the training and testing process using the proposed CNN-LSTM model was started. The performance of the implemented model, CNN-LSTM, was analyzed alongside five traditional machine learning algorithms, namely Random Forest (RF), Extra Trees (ET), K-Nearest Neighbours (KNN), Adaptive Boosting (AdaBoost), and Support Vector Machine (SVM). Accuracy, sensitivity, specificity, F-score, and AUC were the metrics included in the evaluation, confirming the effectiveness of the models. The results of the experiments showed that our CNN-LSTM reached the highest accuracy at 97.1%.</p>","PeriodicalId":20378,"journal":{"name":"Potato Research","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potato Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11540-024-09760-x","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Potato diseases pose a significant threat to farmers, impacting potato crops’ productivity, quality, and financial stability. Among the most notorious diseases is late blight, caused by Phytophthora infestans, famously responsible for triggering the Irish Potato Famine in the 1840s. Late blight swiftly devastates potato foliage and tubers, particularly in damp, humid conditions. Another common disease is early blight, attributed to Alternaria solani. This disease affects various parts of the potato plant—leaves, stems, and tubers. It mainly shows up in the form of dark stains around the center of a bull’s eye on the leaves, bringing down both the yield and the crop quality. A model consisting of a Convolutional Neural Network - Long Short-Term Memory (CNN-LSTM) enhanced for potato disease detection was proposed in our paper. The dataset used was Z-score standardized before the training and testing process using the proposed CNN-LSTM model was started. The performance of the implemented model, CNN-LSTM, was analyzed alongside five traditional machine learning algorithms, namely Random Forest (RF), Extra Trees (ET), K-Nearest Neighbours (KNN), Adaptive Boosting (AdaBoost), and Support Vector Machine (SVM). Accuracy, sensitivity, specificity, F-score, and AUC were the metrics included in the evaluation, confirming the effectiveness of the models. The results of the experiments showed that our CNN-LSTM reached the highest accuracy at 97.1%.
期刊介绍:
Potato Research, the journal of the European Association for Potato Research (EAPR), promotes the exchange of information on all aspects of this fast-evolving global industry. It offers the latest developments in innovative research to scientists active in potato research. The journal includes authoritative coverage of new scientific developments, publishing original research and review papers on such topics as:
Molecular sciences;
Breeding;
Physiology;
Pathology;
Nematology;
Virology;
Agronomy;
Engineering and Utilization.