Thomas H. Drage;Kieran Quirke-Brown;Lemar Haddad;Zhihui Lai;Kai Li Lim;Thomas Bräunl
{"title":"Managing Risk in the Design of Modular Systems for an Autonomous Shuttle","authors":"Thomas H. Drage;Kieran Quirke-Brown;Lemar Haddad;Zhihui Lai;Kai Li Lim;Thomas Bräunl","doi":"10.1109/OJITS.2024.3425165","DOIUrl":null,"url":null,"abstract":"This paper presents an analysis and implementation of a robust autonomous driving system for an electric passenger shuttle in shared spaces. We present results of a risk assessment for our vehicle scenario and develop a flexible architecture that integrates safety features and optimises open-source software, facilitating research and operational functionality. Identifying limitations of the Robot Operating System (ROS) framework, we incorporate our own control measures for autonomous, unsupervised operation with enhanced intelligence. The study emphasizes algorithm selection based on application requirements to ensure optimal performance. We discuss system improvements, including monitoring node implementation and localization algorithm selection. Future work should explore transitioning to a real-time operating system (RTOS) and establishing standardized software engineering practices for consistent reliability. Our findings contribute to effective autonomous shuttle systems in shared spaces, promoting safer and more reliable transportation solutions.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"5 ","pages":"555-565"},"PeriodicalIF":4.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10589470","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10589470/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an analysis and implementation of a robust autonomous driving system for an electric passenger shuttle in shared spaces. We present results of a risk assessment for our vehicle scenario and develop a flexible architecture that integrates safety features and optimises open-source software, facilitating research and operational functionality. Identifying limitations of the Robot Operating System (ROS) framework, we incorporate our own control measures for autonomous, unsupervised operation with enhanced intelligence. The study emphasizes algorithm selection based on application requirements to ensure optimal performance. We discuss system improvements, including monitoring node implementation and localization algorithm selection. Future work should explore transitioning to a real-time operating system (RTOS) and establishing standardized software engineering practices for consistent reliability. Our findings contribute to effective autonomous shuttle systems in shared spaces, promoting safer and more reliable transportation solutions.