Qian Zhang, Qiongqiong Wang, Kris A. G. Wyckhuys, Shuangxia Jin, Yanhui Lu
{"title":"Flavonoids mediate systemic defenses induced by root feeding in cotton","authors":"Qian Zhang, Qiongqiong Wang, Kris A. G. Wyckhuys, Shuangxia Jin, Yanhui Lu","doi":"10.1127/entomologia/2024/2482","DOIUrl":null,"url":null,"abstract":"Plant-herbivore interactions dominate food web links in terrestrial settings, thereby shaping ecosystem structure and functioning. Within a given plant, both primary and secondary metabolites mediate the interplay between above- and below-ground herbivores. Here, we investigate how root feeding by larvae of the turnip moth Agrotis segetum (Lepidoptera: Noctuidae) affects development and feeding behavior of an above-ground sap-feeder i.e., the large cotton aphid Acyrthosiphon gossypii (Hemiptera: Aphididae) on cotton. We further draw upon transcriptomics, metabolomics and in-vitro bioassays to elucidate how plant metabolites mediate these interactions. Root feeding reduces A. gossypii adult survival and fecundity by 35.1%. Aphids on A. segetum-infested cotton spend 7% longer probing cells than on un-infested plants. Root and stem herbivory by A. segetum larvae alters gene transcripts and metabolites in leaves, inducing biosynthesis of three flavonoids i.e., dihydromyricetin, phloridzin and dihydroquercetin. In-vitro bioassays show that the latter two compounds markedly decrease A. gossypii adult survival and fecundity. Below-ground herbivory thus elicits biosynthesis and systemic translocation of phloridzin and dihydroquercetin, with antagonistic effects on above-ground sap-feeders. Our study sheds light on the underlying mechanisms of herbivore-triggered plant defenses in cotton and reveals the interplay between herbivore guilds across ecological realms. We discuss the implications of these findings for pest management.","PeriodicalId":11728,"journal":{"name":"Entomologia Generalis","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entomologia Generalis","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1127/entomologia/2024/2482","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant-herbivore interactions dominate food web links in terrestrial settings, thereby shaping ecosystem structure and functioning. Within a given plant, both primary and secondary metabolites mediate the interplay between above- and below-ground herbivores. Here, we investigate how root feeding by larvae of the turnip moth Agrotis segetum (Lepidoptera: Noctuidae) affects development and feeding behavior of an above-ground sap-feeder i.e., the large cotton aphid Acyrthosiphon gossypii (Hemiptera: Aphididae) on cotton. We further draw upon transcriptomics, metabolomics and in-vitro bioassays to elucidate how plant metabolites mediate these interactions. Root feeding reduces A. gossypii adult survival and fecundity by 35.1%. Aphids on A. segetum-infested cotton spend 7% longer probing cells than on un-infested plants. Root and stem herbivory by A. segetum larvae alters gene transcripts and metabolites in leaves, inducing biosynthesis of three flavonoids i.e., dihydromyricetin, phloridzin and dihydroquercetin. In-vitro bioassays show that the latter two compounds markedly decrease A. gossypii adult survival and fecundity. Below-ground herbivory thus elicits biosynthesis and systemic translocation of phloridzin and dihydroquercetin, with antagonistic effects on above-ground sap-feeders. Our study sheds light on the underlying mechanisms of herbivore-triggered plant defenses in cotton and reveals the interplay between herbivore guilds across ecological realms. We discuss the implications of these findings for pest management.
期刊介绍:
Its scope covers all aspects of basic and applied research dealing with insects and more broadly with arthropods inhabiting wild, agricultural and/or urban habitats. The journal also considers research integrating various disciplines and issues within the broad field of entomology and ecology.
Entomologia Generalis publishes high quality research articles on advances in knowledge on the ecology and biology of arthropods, as well as on their importance for key ecosystems services, e.g. as biological control and pollination. The journal devotes special attention to contributions providing significant advances (i) on the fundamental knowledge and on sustainable control strategies of arthropod pests (including of stored products) and vectors of diseases, (ii) on the biology and ecology of beneficial arthropods, (iii) on the spread and impact of invasive pests, and (iv) on potential side effects of pest management methods.
Entomologia Generalis welcomes review articles on significant developments in the field of entomology. These are usually invited by the editorial board, but proposals may be sent to the Editor-in-Chief for preliminary assessment by the editorial board before formal submission to the journal. The journal also considers comments on papers published in Entomologia Generalis, as well as short notes on topics that are of broader interest.