Quan Deng;Qiang Liu;Ming Yuan;Xiaohui Duan;Lin Gan;Jinzhe Yang;Wenlai Zhao;Zhenxiang Zhang;Guiming Wu;Wayne Luk;Haohuan Fu;Guangwen Yang
{"title":"Acceleration of Multi-Body Molecular Dynamics With Customized Parallel Dataflow","authors":"Quan Deng;Qiang Liu;Ming Yuan;Xiaohui Duan;Lin Gan;Jinzhe Yang;Wenlai Zhao;Zhenxiang Zhang;Guiming Wu;Wayne Luk;Haohuan Fu;Guangwen Yang","doi":"10.1109/TPDS.2024.3420441","DOIUrl":null,"url":null,"abstract":"FPGAs are drawing increasing attention in resolving molecular dynamics (MD) problems, and have already been applied in problems such as two-body potentials, force fields composed of these potentials, etc. Competitive performance is obtained compared with traditional counterparts such as CPUs and GPUs. However, as far as we know, FPGA solutions for more complex and real-world MD problems, such as multi-body potentials, are seldom to be seen. This work explores the prospects of state-of-the-art FPGAs in accelerating multi-body potential. An FPGA-based accelerator with customized parallel dataflow that features multi-body potential computation, motion update, and internode communication is designed. Major contributions include: (1) parallelization applied at different levels of the accelerator; (2) an optimized dataflow mixing atom-level pipeline and cell-level pipeline to achieve high throughput; (3) a mixed-precision method using different precision at different stages of simulations; and (4) a communication-efficient method for internode communication. Experiments show that, our single-node accelerator is over 2.7× faster than an 8-core CPU design, performing 20.501 ns/day on a 55,296-atom system for the \n<italic>Tersoff</i>\n simulation. Regarding power efficiency, our accelerator is 28.9× higher than I7-11700 and 4.8× higher than RTX 3090 when running the same test case.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 12","pages":"2297-2314"},"PeriodicalIF":5.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10589358/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
FPGAs are drawing increasing attention in resolving molecular dynamics (MD) problems, and have already been applied in problems such as two-body potentials, force fields composed of these potentials, etc. Competitive performance is obtained compared with traditional counterparts such as CPUs and GPUs. However, as far as we know, FPGA solutions for more complex and real-world MD problems, such as multi-body potentials, are seldom to be seen. This work explores the prospects of state-of-the-art FPGAs in accelerating multi-body potential. An FPGA-based accelerator with customized parallel dataflow that features multi-body potential computation, motion update, and internode communication is designed. Major contributions include: (1) parallelization applied at different levels of the accelerator; (2) an optimized dataflow mixing atom-level pipeline and cell-level pipeline to achieve high throughput; (3) a mixed-precision method using different precision at different stages of simulations; and (4) a communication-efficient method for internode communication. Experiments show that, our single-node accelerator is over 2.7× faster than an 8-core CPU design, performing 20.501 ns/day on a 55,296-atom system for the
Tersoff
simulation. Regarding power efficiency, our accelerator is 28.9× higher than I7-11700 and 4.8× higher than RTX 3090 when running the same test case.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.