Finding large additive and multiplicative Sidon sets in sets of integers

IF 1.3 2区 数学 Q1 MATHEMATICS
Yifan Jing, Akshat Mudgal
{"title":"Finding large additive and multiplicative Sidon sets in sets of integers","authors":"Yifan Jing, Akshat Mudgal","doi":"10.1007/s00208-024-02932-7","DOIUrl":null,"url":null,"abstract":"<p>Given <span>\\(h,g \\in {\\mathbb {N}}\\)</span>, we write a set <span>\\(X \\subset {\\mathbb {Z}}\\)</span> to be a <span>\\(B_{h}^{+}[g]\\)</span> set if for any <span>\\(n \\in {\\mathbb {Z}}\\)</span>, the number of solutions to the additive equation <span>\\(n = x_1 + \\dots + x_h\\)</span> with <span>\\(x_1, \\dots , x_h \\in X\\)</span> is at most <i>g</i>, where we consider two such solutions to be the same if they differ only in the ordering of the summands. We define a multiplicative <span>\\(B_{h}^{\\times }[g]\\)</span> set analogously. In this paper, we prove, amongst other results, that there exist absolute constants <span>\\(g \\in {\\mathbb {N}}\\)</span> and <span>\\(\\delta &gt;0\\)</span> such that for any <span>\\(h \\in {\\mathbb {N}}\\)</span> and for any finite set <i>A</i> of integers, the largest <span>\\(B_{h}^{+}[g]\\)</span> set <i>B</i> inside <i>A</i> and the largest <span>\\(B_{h}^{\\times }[g]\\)</span> set <i>C</i> inside <i>A</i> satisfy </p><span>$$\\begin{aligned} \\max \\{ |B|, |C| \\} \\gg _{h} |A|^{(1+ \\delta )/h }. \\end{aligned}$$</span><p>In fact, when <span>\\(h=2\\)</span>, we may set <span>\\(g = 31\\)</span>, and when <i>h</i> is sufficiently large, we may set <span>\\(g = 1\\)</span> and <span>\\(\\delta \\gg (\\log \\log h)^{1/2 - o(1)}\\)</span>. The former makes progress towards a recent conjecture of Klurman–Pohoata and quantitatively strengthens previous work of Shkredov.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"16 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02932-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given \(h,g \in {\mathbb {N}}\), we write a set \(X \subset {\mathbb {Z}}\) to be a \(B_{h}^{+}[g]\) set if for any \(n \in {\mathbb {Z}}\), the number of solutions to the additive equation \(n = x_1 + \dots + x_h\) with \(x_1, \dots , x_h \in X\) is at most g, where we consider two such solutions to be the same if they differ only in the ordering of the summands. We define a multiplicative \(B_{h}^{\times }[g]\) set analogously. In this paper, we prove, amongst other results, that there exist absolute constants \(g \in {\mathbb {N}}\) and \(\delta >0\) such that for any \(h \in {\mathbb {N}}\) and for any finite set A of integers, the largest \(B_{h}^{+}[g]\) set B inside A and the largest \(B_{h}^{\times }[g]\) set C inside A satisfy

$$\begin{aligned} \max \{ |B|, |C| \} \gg _{h} |A|^{(1+ \delta )/h }. \end{aligned}$$

In fact, when \(h=2\), we may set \(g = 31\), and when h is sufficiently large, we may set \(g = 1\) and \(\delta \gg (\log \log h)^{1/2 - o(1)}\). The former makes progress towards a recent conjecture of Klurman–Pohoata and quantitatively strengthens previous work of Shkredov.

在整数集合中寻找大的加法和乘法西顿集合
给定(h,g 在{\mathbb {N}}),如果对于任意(n 在{\mathbb {Z}}),我们把一个集合(X 子集{\mathbb {Z}})写成一个(B_{h}^{+}[g])集合、(x_1, \dots , x_h \in X\) 的加法方程 \(n = x_1 + \dots + x_h/)的解的个数最多为 g,其中如果两个这样的解仅在求和的排序上不同,我们就认为它们是相同的。我们类似地定义了一个乘法 \(B_{h}^{times }[g]\)集合。在本文中,除其他结果外,我们还证明了存在绝对常量 \(g \in {\mathbb {N}}\) 和 \(\delta >;0),这样对于任何一个(h)和任何一个有限整数集合A,A内部最大的(B_{h}^{+}[g])集合B和A内部最大的(B_{h}^{times }[g])集合C都满足 $$(开始{aligned})。\max \{ |B|, |C| \}\gg _{h}|A|^{(1+ \delta )/h }.\end{aligned}$$ 事实上,当(h=2)时,我们可以设置(g=31),当h足够大时,我们可以设置(g=1)和(delta \gg (\log \log h)^{1/2 - o(1)})。前者在实现克鲁尔曼-波霍塔(Klurman-Pohoata)最近的猜想方面取得了进展,并在数量上加强了什克雷多夫(Shkredov)之前的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信