Modelling Uncertain Volatility Using Quantum Stochastic Calculus: Unitary vs Non-Unitary Time Evolution

Will Hicks
{"title":"Modelling Uncertain Volatility Using Quantum Stochastic Calculus: Unitary vs Non-Unitary Time Evolution","authors":"Will Hicks","doi":"arxiv-2407.04520","DOIUrl":null,"url":null,"abstract":"In this article we look at stochastic processes with uncertain parameters,\nand consider different ways in which information is obtained when carrying out\nobservations. For example we focus on the case of a the random evolution of a\ntraded financial asset price with uncertain volatility. The quantum approach\npresented, allows us to encode different volatility levels in a state acting on\na Hilbert space. We consider different means of defining projective\nmeasurements in order to track the evolution of a traded market price, and\ndiscuss the results of different Monte-Carlo simulations.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.04520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we look at stochastic processes with uncertain parameters, and consider different ways in which information is obtained when carrying out observations. For example we focus on the case of a the random evolution of a traded financial asset price with uncertain volatility. The quantum approach presented, allows us to encode different volatility levels in a state acting on a Hilbert space. We consider different means of defining projective measurements in order to track the evolution of a traded market price, and discuss the results of different Monte-Carlo simulations.
用量子随机微积分模拟不确定性波动:单一时间演化与非单一时间演化
在本文中,我们将研究具有不确定参数的随机过程,并考虑在进行观测时获取信息的不同方法。例如,我们将重点放在具有不确定波动率的交易金融资产价格的随机演变上。提出的量子方法允许我们在作用于希尔伯特空间的状态中编码不同的波动水平。我们考虑了定义投影测量的不同方法,以跟踪交易市场价格的演变,并讨论了不同蒙特卡洛模拟的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信