Subleading correction to the Asian options volatility in the Black-Scholes model

Dan Pirjol
{"title":"Subleading correction to the Asian options volatility in the Black-Scholes model","authors":"Dan Pirjol","doi":"arxiv-2407.05142","DOIUrl":null,"url":null,"abstract":"The short maturity limit $T\\to 0$ for the implied volatility of an Asian\noption in the Black-Scholes model is determined by the large deviations\nproperty for the time-average of the geometric Brownian motion. In this note we\nderive the subleading $O(T)$ correction to this implied volatility, using an\nasymptotic expansion for the Hartman-Watson distribution. The result is used to\ncompute subleading corrections to Asian options prices in a small maturity\nexpansion, sharpening the leading order result obtained using large deviations\ntheory. We demonstrate good numerical agreement with precise benchmarks for\nAsian options pricing in the Black-Scholes model.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.05142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The short maturity limit $T\to 0$ for the implied volatility of an Asian option in the Black-Scholes model is determined by the large deviations property for the time-average of the geometric Brownian motion. In this note we derive the subleading $O(T)$ correction to this implied volatility, using an asymptotic expansion for the Hartman-Watson distribution. The result is used to compute subleading corrections to Asian options prices in a small maturity expansion, sharpening the leading order result obtained using large deviations theory. We demonstrate good numerical agreement with precise benchmarks for Asian options pricing in the Black-Scholes model.
布莱克-斯科尔斯模型中亚洲期权波动率的次引导修正
布莱克-斯科尔斯(Black-Scholes)模型中亚洲期权隐含波动率的短期限极限 $T/to 0$ 是由几何布朗运动时间平均的大偏差特性决定的。在本文中,我们利用哈特曼-沃森分布的渐近展开,对这一隐含波动率进行了次导$O(T)$修正。这一结果被用于计算亚洲期权价格在小成熟度扩展中的次前导修正,使利用大偏差理论得到的前阶结果更加清晰。我们证明了与布莱克-斯科尔斯模型中亚洲期权定价的精确基准具有良好的数值一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信