Study on the characteristics of tungsten slag and its properties in the cement solidification system

IF 2.7 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Zimei Liu, Xueliang Ge, Feng Ge, Cairong Lu, Zhengnan Zhang
{"title":"Study on the characteristics of tungsten slag and its properties in the cement solidification system","authors":"Zimei Liu,&nbsp;Xueliang Ge,&nbsp;Feng Ge,&nbsp;Cairong Lu,&nbsp;Zhengnan Zhang","doi":"10.1007/s10163-024-02026-1","DOIUrl":null,"url":null,"abstract":"<div><p>The basic characteristics of tungsten slag produced in the production of ammonium para tungstate (APT) and its ground tungsten slag powder were investigated. The mechanical strength characteristics and development of cement-solidified tungsten slag cementation system with raw tungsten slag mixed artificial sand as fine aggregate were discussed by cement solidification/stabilization method. The harmful metal content and leaching concentration of tungsten slag and its cement-solidified cementation system were compared. The test results show that the particle-size distribution of ground tungsten slag presents a more uniform characteristic. When the content of the ground tungsten slag is more than 30% as admixture, the strength ratio does not meet the requirements of the specification. In addition, when the raw tungsten slag be used partly as fine aggregate, the mechanical strength of cement-solidified tungsten slag cementation system is fine. Moreover, the cement solidification/stabilization technology can effectively reduce the leaching concentration of arsenic in tungsten slag. The mechanism of solidification/stabilization of arsenic by Portland cement includes adsorption and precipitate to form calcified arsenic insoluble.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":643,"journal":{"name":"Journal of Material Cycles and Waste Management","volume":"26 5","pages":"3059 - 3072"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10163-024-02026-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Material Cycles and Waste Management","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10163-024-02026-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The basic characteristics of tungsten slag produced in the production of ammonium para tungstate (APT) and its ground tungsten slag powder were investigated. The mechanical strength characteristics and development of cement-solidified tungsten slag cementation system with raw tungsten slag mixed artificial sand as fine aggregate were discussed by cement solidification/stabilization method. The harmful metal content and leaching concentration of tungsten slag and its cement-solidified cementation system were compared. The test results show that the particle-size distribution of ground tungsten slag presents a more uniform characteristic. When the content of the ground tungsten slag is more than 30% as admixture, the strength ratio does not meet the requirements of the specification. In addition, when the raw tungsten slag be used partly as fine aggregate, the mechanical strength of cement-solidified tungsten slag cementation system is fine. Moreover, the cement solidification/stabilization technology can effectively reduce the leaching concentration of arsenic in tungsten slag. The mechanism of solidification/stabilization of arsenic by Portland cement includes adsorption and precipitate to form calcified arsenic insoluble.

Graphical abstract

Abstract Image

水泥凝固系统中钨渣的特性及其性能研究
研究了对位钨酸铵(APT)生产过程中产生的钨渣及其研磨的钨渣粉末的基本特性。采用水泥固化/稳定法探讨了以钨渣原矿掺人工砂为细骨料的水泥固化钨渣胶结体系的力学强度特性和发展。比较了钨渣及其水泥固化胶结体系的有害金属含量和浸出浓度。试验结果表明,磨细钨渣的粒度分布具有更均匀的特点。当掺合料中的磨细钨渣含量超过 30% 时,强度比达不到规范要求。此外,当原钨渣部分用作细骨料时,水泥固化钨渣胶结体系的机械强度较细。此外,水泥固化/稳定技术还能有效降低钨渣中砷的浸出浓度。硅酸盐水泥固化/稳定砷的机理包括吸附和沉淀,形成钙化的不溶砷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
16.10%
发文量
205
审稿时长
4.8 months
期刊介绍: The Journal of Material Cycles and Waste Management has a twofold focus: research in technical, political, and environmental problems of material cycles and waste management; and information that contributes to the development of an interdisciplinary science of material cycles and waste management. Its aim is to develop solutions and prescriptions for material cycles. The journal publishes original articles, reviews, and invited papers from a wide range of disciplines related to material cycles and waste management. The journal is published in cooperation with the Japan Society of Material Cycles and Waste Management (JSMCWM) and the Korea Society of Waste Management (KSWM).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信