Bounds on the Möbius-signed partition numbers

Taylor Daniels
{"title":"Bounds on the Möbius-signed partition numbers","authors":"Taylor Daniels","doi":"10.1007/s11139-024-00885-8","DOIUrl":null,"url":null,"abstract":"<p>For <span>\\(n \\in \\mathbb {N}\\)</span> let <span>\\(\\Pi [n]\\)</span> denote the set of partitions of <i>n</i>, i.e., the set of positive integer tuples <span>\\((x_1,x_2,\\ldots ,x_k)\\)</span> such that <span>\\(x_1 \\ge x_2 \\ge \\ldots \\ge x_k\\)</span> and <span>\\(x_1 + x_2 + \\cdots + x_k = n\\)</span>. Fixing <span>\\(f:\\mathbb {N}\\rightarrow \\{0,\\pm 1\\}\\)</span>, for <span>\\(\\pi = (x_1,x_2,\\ldots ,x_k) \\in \\Pi [n]\\)</span> let <span>\\(f(\\pi ) := f(x_1)f(x_2)\\cdots f(x_k)\\)</span>. In this way we define the signed partition numbers </p><span>$$\\begin{aligned} p(n,f) = \\sum _{\\pi \\in \\Pi [n]} f(\\pi ). \\end{aligned}$$</span><p>Following work of Vaughan and Gafni on partitions into primes and prime powers, we derive asymptotic formulae for <span>\\(p(n,\\mu )\\)</span> and <span>\\(p(n,\\lambda )\\)</span>, where <span>\\(\\mu \\)</span> and <span>\\(\\lambda \\)</span> denote the Möbius and Liouville functions from prime number theory, respectively. In addition we discuss how quantities <i>p</i>(<i>n</i>, <i>f</i>) generalize the classical notion of restricted partitions.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00885-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For \(n \in \mathbb {N}\) let \(\Pi [n]\) denote the set of partitions of n, i.e., the set of positive integer tuples \((x_1,x_2,\ldots ,x_k)\) such that \(x_1 \ge x_2 \ge \ldots \ge x_k\) and \(x_1 + x_2 + \cdots + x_k = n\). Fixing \(f:\mathbb {N}\rightarrow \{0,\pm 1\}\), for \(\pi = (x_1,x_2,\ldots ,x_k) \in \Pi [n]\) let \(f(\pi ) := f(x_1)f(x_2)\cdots f(x_k)\). In this way we define the signed partition numbers

$$\begin{aligned} p(n,f) = \sum _{\pi \in \Pi [n]} f(\pi ). \end{aligned}$$

Following work of Vaughan and Gafni on partitions into primes and prime powers, we derive asymptotic formulae for \(p(n,\mu )\) and \(p(n,\lambda )\), where \(\mu \) and \(\lambda \) denote the Möbius and Liouville functions from prime number theory, respectively. In addition we discuss how quantities p(nf) generalize the classical notion of restricted partitions.

Abstract Image

莫比乌斯符号分割数的界限
For (n \in \mathbb {N}\) let \(\Pi [n]\) denote the set of partitions of n, i.e..、((x_1,x_2,\ldots,x_k)\)使得(x_1 \ge x_2 \ge \ldots \ge x_k)并且(x_1 + x_2 + \cdots + x_k = n\ )的正整数元组的集合。固定(f:mathbb {N}\rightarrow \{0,\pm 1\} ),对于(pi = (x_1,x_2,\ldots ,x_k) \in \Pi [n]\) 让(f(\pi ) := f(x_1)f(x_2)\cdots f(x_k))。这样我们就定义了有符号的分割数 $$\begin{aligned} p(n,f) = \sum _{\pi \in \Pi [n]} f(\pi ).\end{aligned}$$Following work of Vaughan and Gafni on partitions into primes and prime powers, we derive asymptotic formulae for \(p(n,\mu )\) and \(p(n,\lambda )\), where \(\mu \) and\(\lambda \) denied the Möbius and Liouville functions from prime number theory, respectively.此外,我们还讨论了量 p(n, f) 如何概括受限分区的经典概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信