MacroPARAFAC for handling rowwise and cellwise outliers in incomplete multiway data

IF 3.7 2区 化学 Q2 AUTOMATION & CONTROL SYSTEMS
Mia Hubert, Mehdi Hirari
{"title":"MacroPARAFAC for handling rowwise and cellwise outliers in incomplete multiway data","authors":"Mia Hubert,&nbsp;Mehdi Hirari","doi":"10.1016/j.chemolab.2024.105170","DOIUrl":null,"url":null,"abstract":"<div><p>Multiway data extend two-way matrices into higher-dimensional tensors, often explored through dimensional reduction techniques. In this paper, we study the Parallel Factor Analysis (PARAFAC) model for handling multiway data, representing it more compactly through a concise set of loading matrices and scores. We assume that the data may be incomplete and could contain both rowwise and cellwise outliers, signifying cases that deviate from the majority and outlying cells dispersed throughout the data array. To address these challenges, we present a novel algorithm designed to robustly estimate both loadings and scores. Additionally, we introduce an enhanced outlier map to distinguish various patterns of outlying behavior. Through simulations and the analysis of fluorescence Excitation-Emission Matrix (EEM) data, we demonstrate the robustness of our approach. Our results underscore the effectiveness of diagnostic tools in identifying and interpreting unusual patterns within the data.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"251 ","pages":"Article 105170"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924001102","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Multiway data extend two-way matrices into higher-dimensional tensors, often explored through dimensional reduction techniques. In this paper, we study the Parallel Factor Analysis (PARAFAC) model for handling multiway data, representing it more compactly through a concise set of loading matrices and scores. We assume that the data may be incomplete and could contain both rowwise and cellwise outliers, signifying cases that deviate from the majority and outlying cells dispersed throughout the data array. To address these challenges, we present a novel algorithm designed to robustly estimate both loadings and scores. Additionally, we introduce an enhanced outlier map to distinguish various patterns of outlying behavior. Through simulations and the analysis of fluorescence Excitation-Emission Matrix (EEM) data, we demonstrate the robustness of our approach. Our results underscore the effectiveness of diagnostic tools in identifying and interpreting unusual patterns within the data.

用于处理不完整多向数据中行向和单元向异常值的 MacroPARAFAC
多向数据将双向矩阵扩展为高维张量,通常通过降维技术进行探索。在本文中,我们研究了处理多向数据的并行因子分析(PARAFAC)模型,通过一组简洁的载荷矩阵和分数更紧凑地表示多向数据。我们假设数据可能是不完整的,可能包含行向和单元向离群值,即偏离多数的情况和分散在整个数据阵列中的离群单元。为了应对这些挑战,我们提出了一种新颖的算法,旨在稳健地估算载荷和分数。此外,我们还引入了增强型离群图,以区分各种离群行为模式。通过对荧光激发-发射矩阵(EEM)数据的模拟和分析,我们证明了我们方法的稳健性。我们的结果强调了诊断工具在识别和解释数据中异常模式方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
7.70%
发文量
169
审稿时长
3.4 months
期刊介绍: Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines. Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data. The journal deals with the following topics: 1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.) 2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered. 3) Development of new software that provides novel tools or truly advances the use of chemometrical methods. 4) Well characterized data sets to test performance for the new methods and software. The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信