Lagrangian Perspectives on the Small-scale Structure of Alfvénic Turbulence and Stochastic Models for the Dispersion of Fluid Particles and Magnetic Field Lines in the Solar Wind

N. H. Bian, Gang Li
{"title":"Lagrangian Perspectives on the Small-scale Structure of Alfvénic Turbulence and Stochastic Models for the Dispersion of Fluid Particles and Magnetic Field Lines in the Solar Wind","authors":"N. H. Bian, Gang Li","doi":"10.3847/1538-4365/ad4a5c","DOIUrl":null,"url":null,"abstract":"Lagrangian perspectives on the small-scale structure of anisotropic Alfvénic turbulence are adopted. We are interested in relating the statistical properties of the Eulerian field increments evaluated along the fluid particle trajectories, in the direction perpendicular to the guiding magnetic field and along the magnetic field lines. We establish the basis for a unified multifractal phenomenology of Eulerian and Lagrangian Alfvénic turbulence. The critical balance condition is generalized to structure functions of an order different than 2. A Lagrangian perspective is not only useful for investigating the small-scale structure of Alfvénic turbulence, it is also tailored to the modeling of large-scale turbulent transport. Therefore, we develop Lagrangian stochastic models for the dispersion of fluid particles and magnetic field lines in the solar wind. The transport models are based on the integrated Ornstein–Uhlenbeck process that is not Markov, yielding smooth stochastic fluid particle trajectories and magnetic field lines. Brownian diffusion is recovered by tending the integral scale parameter to zero while keeping the diffusivity finite.","PeriodicalId":22368,"journal":{"name":"The Astrophysical Journal Supplement Series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Supplement Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4365/ad4a5c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lagrangian perspectives on the small-scale structure of anisotropic Alfvénic turbulence are adopted. We are interested in relating the statistical properties of the Eulerian field increments evaluated along the fluid particle trajectories, in the direction perpendicular to the guiding magnetic field and along the magnetic field lines. We establish the basis for a unified multifractal phenomenology of Eulerian and Lagrangian Alfvénic turbulence. The critical balance condition is generalized to structure functions of an order different than 2. A Lagrangian perspective is not only useful for investigating the small-scale structure of Alfvénic turbulence, it is also tailored to the modeling of large-scale turbulent transport. Therefore, we develop Lagrangian stochastic models for the dispersion of fluid particles and magnetic field lines in the solar wind. The transport models are based on the integrated Ornstein–Uhlenbeck process that is not Markov, yielding smooth stochastic fluid particle trajectories and magnetic field lines. Brownian diffusion is recovered by tending the integral scale parameter to zero while keeping the diffusivity finite.
阿尔费尼湍流小尺度结构的拉格朗日视角以及太阳风中流体粒子和磁场线散布的随机模型
采用拉格朗日视角研究各向异性阿尔费尼湍流的小尺度结构。我们感兴趣的是将沿着流体粒子轨迹、垂直于引导磁场的方向以及沿着磁场线评估的欧拉场增量的统计特性联系起来。我们建立了统一的欧拉和拉格朗日阿尔费尼湍流多分形现象学的基础。临界平衡条件被推广到阶数不同于 2 的结构函数。拉格朗日视角不仅有助于研究阿尔费尼湍流的小尺度结构,也适合大尺度湍流传输建模。因此,我们为太阳风中流体粒子和磁场线的散布建立了拉格朗日随机模型。输运模型基于非马尔可夫的集成奥恩斯坦-乌伦贝克过程,产生平滑的随机流体粒子轨迹和磁场线。布朗扩散是通过将积分尺度参数趋向于零,同时保持扩散率有限来恢复的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信