{"title":"Unbiased process capability estimation for autocorrelated data using exhaustive systematic sampling","authors":"Scott D. Grimshaw, Zhupeng Guo, Tyler Duke","doi":"10.1002/qre.3617","DOIUrl":null,"url":null,"abstract":"It is well known that process control index estimators are inflated when naively applied to positively autocorrelated data. The autocorrelation is a nuisance and not a feature that is captured in the process capability indices. This paper proposes exhaustive systematic sampling to create a pooled variance estimator that replaces the biased estimator of the process data standard deviation when data are autocorrelated. The proposed method is effective because the observations within a systematic sample are spread out in time and should be less correlated with each other as a result. It is similar to Bayesian thinning as a strategy for reducing the impact of autocorrelation except no observations are dropped. Properties of estimated process control indices are derived using quadratic forms and large sample theory that is nonparametric in the sense no distribution or time series model is assumed. Approximately unbiased estimates can be achieved for sufficiently large systematic sampling interval. The proposed method is compared to the time series method in a simulation study that demonstrates similar performance. The proposed method is applied to two examples that use because the target is not the midpoint of the specification limits and the mean differs from the target.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3617","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
It is well known that process control index estimators are inflated when naively applied to positively autocorrelated data. The autocorrelation is a nuisance and not a feature that is captured in the process capability indices. This paper proposes exhaustive systematic sampling to create a pooled variance estimator that replaces the biased estimator of the process data standard deviation when data are autocorrelated. The proposed method is effective because the observations within a systematic sample are spread out in time and should be less correlated with each other as a result. It is similar to Bayesian thinning as a strategy for reducing the impact of autocorrelation except no observations are dropped. Properties of estimated process control indices are derived using quadratic forms and large sample theory that is nonparametric in the sense no distribution or time series model is assumed. Approximately unbiased estimates can be achieved for sufficiently large systematic sampling interval. The proposed method is compared to the time series method in a simulation study that demonstrates similar performance. The proposed method is applied to two examples that use because the target is not the midpoint of the specification limits and the mean differs from the target.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.