{"title":"Distribution‐free multivariate process monitoring: A rank‐energy statistic‐based approach","authors":"Niladri Chakraborty, Maxim Finkelstein","doi":"10.1002/qre.3619","DOIUrl":null,"url":null,"abstract":"In this paper, a multivariate process monitoring scheme based on the rank‐energy statistics is proposed which is suitable for high‐dimensional applications such as sensorless drive diagnosis. The rank‐energy statistic is based on multivariate ranks that is grounded on the measure transportation theory. Univariate ranks could be interpreted as a solution to an optimisation problem involving a given set of observations of size and the set {}. Recently, attaining greater robustness than spatial sign or depth‐based ranks, multivariate ranks are proposed as solutions to such optimisation problem in multivariate settings (measure transportation problem). The proposed multivariate process monitoring scheme based on the rank‐energy statistic, subsequently, attains greater robustness than existing nonparametric multivariate process monitoring methods based on spatial sign or depth‐based ranks. The proposed method is also applicable to high‐dimensional data unlike some of the existing nonparametric multivariate process monitoring methods. A rigorous simulation study demonstrates its effective shift detection ability and other important features. A practical application of the proposed method is demonstrated with the sensorless drive diagnosis case study.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":"14 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3619","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a multivariate process monitoring scheme based on the rank‐energy statistics is proposed which is suitable for high‐dimensional applications such as sensorless drive diagnosis. The rank‐energy statistic is based on multivariate ranks that is grounded on the measure transportation theory. Univariate ranks could be interpreted as a solution to an optimisation problem involving a given set of observations of size and the set {}. Recently, attaining greater robustness than spatial sign or depth‐based ranks, multivariate ranks are proposed as solutions to such optimisation problem in multivariate settings (measure transportation problem). The proposed multivariate process monitoring scheme based on the rank‐energy statistic, subsequently, attains greater robustness than existing nonparametric multivariate process monitoring methods based on spatial sign or depth‐based ranks. The proposed method is also applicable to high‐dimensional data unlike some of the existing nonparametric multivariate process monitoring methods. A rigorous simulation study demonstrates its effective shift detection ability and other important features. A practical application of the proposed method is demonstrated with the sensorless drive diagnosis case study.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.